1,286 research outputs found

    Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds

    Get PDF
    By matching of repeat optical satellite images it is now possible to investigate glacier dynamics within large regions of the world and also between regions to improve knowledge about glacier dynamics in space and time. In this study we investigate whether the negative glacier mass balance seen over large parts of the world has caused the glaciers to change their speeds. The studied regions are Pamir, Caucasus, Penny Ice Cap, Alaska Range and Patagonia. In addition we derive speed changes for Karakoram, a region assumed to have positive mass balance and that contains many surge-type glaciers. We find that the mapped glaciers in the five regions with negative mass balance have over the last decades decreased their velocity at an average rate per decade of: 43 % in the Pamir, 8 % in the Caucasus, 25 % on Penny Ice Cap, 11 % in the Alaska Range and 20 % in Patagonia. Glaciers in Karakoram have generally increased their speeds, but surging glaciers and glaciers with flow instabilities are most prominent in this area. Therefore the calculated average speed change is not representative for this area

    Pressure effects on crystal and electronic structure of bismuth tellurohalides

    Get PDF
    We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the formation of an intermediate phase, a Weyl semimetal, that leads to modification of surface state dispersions. In the topologically trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the Weyl semimetal--TI transition occurs, the surface electronic structure is characterized by gapless states with linear dispersion. The peculiarities of the surface states modification under pressure depend on the band-bending effect. We have also calculated the frequencies of Raman active modes for BiTeI in the proposed high-pressure crystal phases in order to compare them with available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological phase transition does not occur. In BiTeBr, the crystal structure changes with pressure but the phase remains a trivial one. However, the transition appears to be possible if the low-pressure crystal structure is retained. In BiTeCl under pressure, the topological phase does not appear up to 18 GPa due to a relatively large band gap width in this compound

    Devices for Information Presentation in Electronic Dictionaries*

    Get PDF
    Electronic dictionaries should support dictionary users by giving them guidance in text production and text reception, alongside a user-definable offer of lexicographic data for cognitive purposes. In this article, we sketch the principles of an interactive and dynamic electronic dictionary aimed at text production and text reception guiding users in innovative ways, especially with respect to difficult, complicated or confusing issues. The lexicographer has to do a very careful analysis of the nature of the possible problems to suggest an optimal solution for a specific problem. We are of the opinion that there are numerous complex situations where users need more detailed support than currently available in e-dictionaries, enabling them to make valid and correct choices. For highly complex situations, we suggest guidance through a decision tree-like device. We assume that the solutions proposed here are not specific to one language only but can, after careful analysis, be applied to e-dictionaries in different languages across the world. Keywords: Electronic Dictionaries; User Guidance; Text Production; Text Reception; Dictionary Design, Decision Tree Structure, Copulatives, Kinship Terminology, Information Presentation Device

    Ab initio lattice dynamics and electron-phonon coupling of Bi(111)

    Get PDF
    We present a comprehensive ab initio study of structural, electronic, lattice dynamical and electron-phonon coupling properties of the Bi(111) surface within density functional perturbation theory. Relativistic corrections due to spin-orbit coupling are consistently taken into account. As calculations are carried out in a periodic slab geometry, special attention is given to the convergence with respect to the slab thickness. Although the electronic structure of Bi(111) thin films varies significantly with thickness, we found that the lattice dynamics of Bi(111) is quite robust and appears converged already for slabs as thin as 6 bilayers. Changes of interatomic couplings are confined mostly to the first two bilayers, resulting in super-bulk modes with frequencies higher than the optic bulk spectrum, and in an enhanced density of states at lower frequencies for atoms in the first bilayer. Electronic states of the surface band related to the outer part of the hole Fermi surfaces exhibit a moderate electron-phonon coupling of about 0.45, which is larger than the coupling constant of bulk Bi. States at the inner part of the hole surface as well as those forming the electron pocket close to the zone center show much increased couplings due to transitions into bulk projected states near Gamma_bar. For these cases, the state dependent Eliashberg functions exhibit pronounced peaks at low energy and strongly deviate in shape from a Debye-like spectrum, indicating that an extraction of the coupling strength from measured electronic self-energies based on this simple model is likely to fail.Comment: 30 pages, 11 figure

    Staggered Pairing Phenomenology for UPd_2Al_3 and UNi_2Al_3

    Full text link
    We apply the staggered-pairing Ginzburg-Landau phenomenology to describe superconductivity in UPd_2Al_3 and UNi_2Al_3. The phenomenology was applied successfully to UPt_3 so it explains why these materials have qualitatively different superconducting phase diagrams although they have the same point-group symmetry. UPd_2Al_3 and UNi_2Al_3 have a two-component superconducting order parameter transforming as an H-point irreducible representation of the space group. Staggered superconductivity can induce charge-density waves characterized by new Bragg peaks suggesting experimental tests of the phenomenology.Comment: 4 pages, REVTeX, 2 Postscript figure

    SLIMS—a user-friendly sample operations and inventory management system for genotyping labs

    Get PDF
    Summary: We present the Sample-based Laboratory Information Management System (SLIMS), a powerful and user-friendly open source web application that provides all members of a laboratory with an interface to view, edit and create sample information. SLIMS aims to simplify common laboratory tasks with tools such as a user-friendly shopping cart for subjects, samples and containers that easily generates reports, shareable lists and plate designs for genotyping. Further key features include customizable data views, database change-logging and dynamically filled pre-formatted reports. Along with being feature-rich, SLIMS' power comes from being able to handle longitudinal data from multiple time-points and biological sources. This type of data is increasingly common from studies searching for susceptibility genes for common complex diseases that collect thousands of samples generating millions of genotypes and overwhelming amounts of data. LIMSs provide an efficient way to deal with this data while increasing accessibility and reducing laboratory errors; however, professional LIMS are often too costly to be practical. SLIMS gives labs a feasible alternative that is easily accessible, user-centrically designed and feature-rich. To facilitate system customization, and utilization for other groups, manuals have been written for users and developers
    • …
    corecore