6 research outputs found

    Software and reversible systems: A\ua0survey of recent activities

    No full text
    Software plays a central role in all aspects of reversible computing. We survey the breadth of topics and recent activities on reversible software and systems including behavioural types, recovery, debugging, concurrency, and object-oriented programming. These have the potential to provide linguistic abstractions and tools that will lead to safer and more reliable reversible computing applications

    From Reversible Semantics to Reversible Debugging

    No full text
    International audienceThis paper presents a line of research in reversible computing for concurrent systems. This line of research started in 2004 with the definition of the first reversible extensions for concurrent process calculi such as CCS, and is currently heading to the production of practical reversible debuggers for concurrent languages such as Erlang. Main questions that had to be answered during the research include the following. Which is the correct notion of reversibility for concurrent systems? Which history information needs to be stored? How to control the basic reversibility mechanism? How to exploit reversibility for debugging? How to apply reversible debugging to real languages

    Software and Reversible Systems: A Survey of Recent Activities

    Get PDF
    International audienceSoftware plays a central role in all aspects of reversible computing. We survey the breadth of topics and recent activities on reversible software and systems including behavioural types, recovery, debugging, concurrency, and object-oriented programming. These have the potential to provide linguistic abstractions and tools that will lead to safer and more reliable reversible computing applications

    Foundations of reversible computation

    Get PDF
    Reversible computation allows computation to proceed not only in the standard, forward direction, but also backward, recovering past states. While reversible computation has attracted interest for its multiple applications, covering areas as different as low-power computing, simulation, robotics and debugging, such applications need to be supported by a clear understanding of the foundations of reversible computation. We report below on many threads of research in the area of foundations of reversible computing, giving particular emphasis to the results obtained in the framework of the European COST Action IC1405, entitled “Reversible Computation - Extending Horizons of Computing”, which took place in the years 2015–2019
    corecore