2,930 research outputs found

    The Lost Child: A True Tradition of Wachusett

    Get PDF
    This short piece is an account from the March 7th, 1874, issue of the Clinton Courant newspaper about the 1755 disappearance of four-year-old Lucy Keyes from Princeton, Massachusetts.https://digicom.bpl.lib.me.us/books_pubs/1079/thumbnail.jp

    Burst avalanches in solvable models of fibrous materials

    Full text link
    We review limiting models for fracture in bundles of fibers, with statistically distributed thresholds for breakdown of individual fibers. During the breakdown process, avalanches consisting of simultaneous rupture of several fibers occur, and the distribution D(Δ)D(\Delta) of the magnitude Δ\Delta of such avalanches is the central characteristics in our analysis. For a bundle of parallel fibers two limiting models of load sharing are studied and contrasted: the global model in which the load carried by a bursting fiber is equally distributed among the surviving members, and the local model in which the nearest surviving neighbors take up the load. For the global model we investigate in particular the conditions on the threshold distribution which would lead to anomalous behavior, i.e. deviations from the asymptotics D(Δ)∼Δ−5/2D(\Delta) \sim \Delta^{-5/2}, known to be the generic behavior. For the local model no universal power-law asymptotics exists, but we show for a particular threshold distribution how the avalanche distribution can nevertheless be explicitly calculated in the large-bundle limit.Comment: 28 pages, RevTeX, 3 Postscript figure

    Fission Surface Power Technology Development Status

    Get PDF
    With the potential future deployment of a lunar outpost there is expected to be a clear need for a high-power, lunar surface power source to support lunar surface operations independent of the day-night cycle, and Fission Surface Power (FSP) is a very effective solution for power levels above a couple 10 s of kWe. FSP is similarly enabling for the poorly illuminated surface of Mars. The power levels/requirements for a lunar outpost option are currently being studied, but it is known that cost is clearly a predominant concern to decision makers. This paper describes the plans of NASA and the DOE to execute an affordable fission surface power system technology development project to demonstrate sufficient technology readiness of an affordable FSP system so viable and cost-effective FSP system options will be available when high power lunar surface system choices are expected to be made in the early 2010s

    Development and Utilization of Space Fission Power Systems

    Get PDF
    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications

    Fission Surface Power Technology Development Status

    Get PDF
    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project

    Guest Editorial

    Get PDF
    This is an editorial which introduces original papers produced on the theme of the supervision of social work practiceThis is an Accepted Manuscript of an article published by Taylor & Francis in Practice: Social Work in Action on September 2015, available online: http://dx.doi.org/10.1080/09503153.2015.1048053This guest editorial introduces the special edition on the supervision of social work practic

    Fission Surface Power Technology Development Update

    Get PDF
    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and places beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited or environmental conditions are challenging (e.g., extreme cold, dust storms). NASA and the Department of Energy are maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for a fission surface power system. The Fission Surface Power Systems project has focused on subscale component and subsystem demonstrations to address the feasibility of a low-risk, low-cost approach to space nuclear power for surface missions. Laboratory demonstrations of the liquid metal pump, reactor control drum drive, power conversion, heat rejection, and power management and distribution technologies have validated that the fundamental characteristics and performance of these components and subsystems are consistent with a Fission Surface Power preliminary reference concept. In addition, subscale versions of a non-nuclear reactor simulator, using electric resistance heating in place of the reactor fuel, have been built and operated with liquid metal sodium-potassium and helium/xenon gas heat transfer loops, demonstrating the viability of establishing system-level performance and characteristics of fission surface power technologies without requiring a nuclear reactor. While some component and subsystem testing will continue through 2011 and beyond, the results to date provide sufficient confidence to proceed with system level technology readiness demonstration. To demonstrate the system level readiness of fission surface power in an operationally relevant environment (the primary goal of the Fission Surface Power Systems project), a full scale, 1/4 power Technology Demonstration Unit (TDU) is under development. The TDU will consist of a non-nuclear reactor simulator, a sodium-potassium heat transfer loop, a power conversion unit with electrical controls, and a heat rejection system with a multi-panel radiator assembly. Testing is planned at the Glenn Research Center Vacuum Facility 6 starting in 2012, with vacuum and liquid-nitrogen cold walls to provide simulation of operationally relevant environments. A nominal two-year test campaign is planned including a Phase 1 reactor simulator and power conversion test followed by a Phase 2 integrated system test with radiator panel heat rejection. The testing is expected to demonstrate the readiness and availability of fission surface power as a viable power system option for NASA's exploration needs. In addition to surface power, technology development work within this project is also directly applicable to in-space fission power and propulsion systems

    Cloning and expression of a mammalian peptide chain release factor with sequence similarity to tryptophanyl-tRNA synthetases

    Get PDF
    The termination of protein synthesis is encoded by in-frame nonsense (stop) codons. Most organisms use three nonsense codons: UGA, UAG, and UAA. In contrast to sense codons, which are decoded by specific tRNAs, nonsense codons are decoded by proteins called release factors (RFs). Here we report the cloning of a mammalian RF cDNA by the use of monoclonal antibodies specific for rabbit RF. Functional studies showed that, when expressed in Escherichia coli, the protein encoded by this cDNA has in vitro biochemical characteristics similar to those of previously characterized mammalian RFs. DNA sequencing of this eukaryotic RF cDNA revealed a remarkable sequence similarity to bacterial and mitochondrial tryptophanyl-tRNA synthetases, with the greatest similarity confined to the synthetase active site, and no obvious similarity to bacterial RFs
    • …
    corecore