61 research outputs found

    Real-Time PCR-Based Mismatch Amplification Mutation Assay for Specific Detection of CS6-Expressing Allelic Variants of Enterotoxigenic Escherichia coli and Its Application in Assessing Diarrheal Cases and Asymptomatic Controls

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) expressing the colonization factor CS6 is widespread in many developing countries, including India. The different allelic variants of CS6, caused by point mutations in its structural genes, cssA and cssB, are designated AIBI, AIIBII, AIIIBI, AIBII, and AIIIBII. A simple, reliable, and specific mismatch amplification mutation assay based on real-time quantitative PCR (MAMA-qPCR) was developed for the first time for the detection of CS6-expressing ETEC, along with the identification of allelic variations. The assay was based on mismatched nucleotide incorporation at the penultimate base at the 3' ends of the reverse primers specific for cssA and cssB and was validated using 38 CS6-expressing ETEC isolates. This strategy was effective in detecting all the alleles containing single-nucleotide polymorphisms. Using MAMA-qPCR, we also tested CS6 allelic variants in 145 ETEC isolates from children with acute diarrhea and asymptomatic infections, with the latter serving as controls. We observed that the AIBI and AIIIBI allelic variants were mostly associated with cases rather than controls, whereas the AIIBII variants were detected mostly in controls. In addition, the AIBI and AIIIBI alleles were frequently associated with ETEC harboring the heat-stable toxin gene (est) alone or with the heat-labile toxin gene (elt), whereas the AIIBII allele was predominant in ETEC isolates harboring the elt gene. This study may help in understanding the association of allelic variants in CS6-expressing ETEC with the clinical features of diarrhea, as well as in ETEC vaccine studies

    Antigenic Change in Human Influenza A(H2N2) Viruses Detected by Using Human Plasma from Aged and Younger Adult Individuals

    Get PDF
    Human influenza A(H2N2) viruses emerged in 1957 and were replaced by A(H3N2) viruses in 1968. The antigenicity of human H2N2 viruses has been tested by using ferret antisera or mouse and human monoclonal antibodies. Here, we examined the antigenicity of human H2N2 viruses by using human plasma samples obtained from 50 aged individuals who were born between 1928 and 1933 and from 33 younger adult individuals who were born after 1962. The aged individuals possessed higher neutralization titers against H2N2 viruses isolated in 1957 and 1963 than those against H2N2 viruses isolated in 1968, whereas the younger adults who were born between 1962 and 1968 possessed higher neutralization titers against H2N2 viruses isolated in 1963 than those against other H2N2 viruses. Antigenic cartography revealed the antigenic changes that occurred in human H2N2 viruses during circulation in humans for 11 years, as detected by ferret antisera. These results show that even though aged individuals were likely exposed to more recent H2N2 viruses that are antigenically distinct from the earlier H2N2 viruses, they did not possess high neutralizing antibody titers to the more recent viruses, suggesting immunological imprinting of these individuals with the first H2N2 viruses they encountered and that this immunological imprinting lasts for over 50 years

    Characterization and Studies of the Cellular Interaction of Native Colonization Factor CS6 Purified from a Clinical Isolate of Enterotoxigenic Escherichia coliâ–¿

    No full text
    CS6 is a widely expressed colonization factor of enterotoxigenic Escherichia coli (ETEC). To date, CS6 has not been well characterized in its native state. Here, we purified CS6 for the first time from an ETEC clinical isolate. Purified CS6 was composed of two structural subunits, CssA and CssB, which were present in equal amounts and tightly linked through noncovalent, detergent-stable association. The CssA subunit was poorly immunogenic, whereas CssB was highly immunogenic. Although the predicted molecular mass of CssA is 15 kDa, the purified CssA has an effective molecular mass of 18.5 kDa due to fatty acid modification. When purified CS6 was screened for its ability to bind with different extracellular matrix proteins, fibronectin (Fn) was found to interact with CS6 as well as CssA in a dose-dependent and saturable manner. This interaction was inhibited both by a synthetic peptide corresponding to the C-terminal hydrophilic, surface-exposed region of CssA (positions 112 to 126) and by the antibody derived against this region. Enzyme-linked immunosorbent assay results showed that CssA interacted with the 70-kDa N-terminal domain of Fn. The modifications on CssA probably do not play a role in Fn binding. Preincubation of INT 407 cells with CssA, but not CssB, inhibited ETEC binding to these cells. The results suggested that CS6-expressing ETEC binds to Fn of INT 407 cells through the C-terminal region of CssA. Purified CS6 was found to colocalize with Fn along the junctions of INT 407 cells. Based on the results obtained, we propose that CS6-expressing ETEC binds to the intestinal cells through Fn for colonization

    Clonal Diversity among Recently Emerged Strains of Vibrio parahaemolyticus O3:K6 Associated With Pandemic Spread

    No full text
    The genomes of the O3:K6 strains of Vibrio parahaemolyticus which abruptly emerged in Calcutta, India, in February 1996 and which demonstrated an unusual potential to spread and an enhanced propensity to cause infections were examined by different molecular techniques to determine clonality. No restriction fragment length polymorphism (RFLP) in the gene encoding the thermostable direct hemolysin was observed among the O3:K6 isolates of V. parahaemolyticus. Clonal diversity among the O3:K6 strains became evident by examining the RFLPs of the rrn operons and by the use of pulsed-field gel electrophoresis. Five ribotypes were distinguished among the O3:K6 strains examined, with ribotype R4 constituting the major type. Strains of O3:K6 isolated between June and August 1996 showed different pulsotypes compared to the pulsotypes of strains isolated before and after this period, indicating genetic reassortment among these strains, but those isolated between August 1996 and March 1998 showed identical or nearly similar pulsotypes. It is clear that there is a certain degree of genomic reassortment among the O3:K6 clones but that these strains are predominantly one clone
    • …
    corecore