993 research outputs found

    Childhood adversity, adult socioeconomic status and risk of work disability: a prospective cohort study.

    Get PDF
    OBJECTIVES: To examine the combined effects of childhood adversities and low adult socioeconomic status (SES) on the risk of future work disability. METHODS: Included were 34 384 employed Finnish Public Sector study participants who responded to questions about childhood adversities (none vs any adversity, eg, parental divorce or financial difficulties) in 2008, and whose adult SES in 2008 was available. We categorised exposure into four groups: neither (reference), childhood adversity only, low SES only or both. Participants were followed from 2009 until the first period of register-based work disability (sickness absence >9 days or disability pension) due to any cause, musculoskeletal or mental disorders; retirement; death or end of follow-up (December 2011). We ran Cox proportional hazard models adjusted for behavioural, health-related and work-related covariates, and calculated synergy indices for the combined effects. RESULTS: When compared with those with neither exposure, HR for work disability from any cause was increased among participants with childhood adversity, with low SES, and those with both exposures. The highest hazard was observed in those with both exposures: HR 2.53, 95% CI 2.29 to 2.79 for musculoskeletal disability, 1.55, 95% CI 1.36 to 1.78 for disability due to mental disorders and 1.29, 95% CI 1.20 to 1.39 for disability due to other reasons. The synergy indices did not indicate synergistic effects. CONCLUSIONS: These findings indicate that childhood psychosocial adversity and low adult SES are additive risk factors for work disability

    Change in Job Strain as a Predictor of Change in Insomnia Symptoms: Analyzing Observational Data as a Non-randomized Pseudo-Trial

    Get PDF
    Study objectives: To examine whether change in job strain leads to change in insomnia symptoms. Methods: Among 24873 adults (82% women, mean age 44 years) who participated in a minimum of three consecutive study waves (2000–2012), job strain was assessed at the first and second wave and insomnia symptoms at all three waves. We analyzed observational data as a “pseudo-trial” including participants with no job strain in the first wave and no insomnia symptoms in the first and second wave (n = 7354) to examine whether the onset of job strain between the first and second waves predicted the onset of insomnia symptoms in the third wave. We used a corresponding approach, including those with job strain in the first wave and insomnia symptoms in the first and second wave (n = 2332), to examine whether the disappearance of job strain between the first two waves predicted remission of insomnia symptoms in the third wave. Results: The onset of job strain predicted the onset of subsequent insomnia symptoms after adjustment for sex, age, marital status, education, smoking, physical activity, alcohol consumption, body mass index, and comorbidities (odds ratio compared to no onset of job strain 1.32, 95% CI 1.16–1.51). The disappearance of job strain was associated with lower odds of repeated insomnia symptoms (odds ratio compared to no disappearance of job strain 0.78, 95% CI 0.65–0.94). Further adjustment for shift work or sleep apnea did not change these associations. Conclusions: These results suggest that job strain is a modifiable risk factor for insomnia symptoms

    Fermi resonance-algebraic model for molecular vibrational spectra

    Full text link
    A Fermi resonance-algebraic model is proposed for molecular vibrations, where a U(2) algebra is used for describing the vibrations of each bond, and Fermi resonances between stretching and bending modes are taken into account. The model for a bent molecule XY_2 and a molecule XY_3 is successfully applied to fit the recently observed vibrational spectrum of the water molecule and arsine (AsH_3), respectively, and results are compared with those of other models. Calculations show that algebraic approaches can be used as an effective method for describing molecular vibrations with small standard deviations

    Donor Centers and Absorption Spectra in Quantum Dots

    Full text link
    We have studied the electronic properties and optical absorption spectra of three different cases of donor centers, D^{0}, D^{-} and D^{2-}, which are subjected to a perpendicular magnetic field, using the exact diagonalization method. The energies of the lowest lying states are obtained as function of the applied magnetic field strength B and the distance zeta between the positive ion and the confinement xy-plane. Our calculations indicate that the positive ion induces transitions in the ground-state, which can be observed clearly in the absorption spectra, but as zeta goes to 0 the strength of the applied magnetic field needed for a transition to occur tends to infinity.Comment: 5 pages, 4 figures, REVTeX 4, gzipped tar fil

    Effect of Subband Landau Level Coupling to the Linearly Dispersing Collective Mode in a Quantum Hall Ferromagnet

    Full text link
    In a recent experiment (Phys. Rev. Lett. {\bf 87}, 036903 (2001)), Spielman et al observed a linearly dispersing collective mode in quantum Hall ferromagnet. While it qualitatively agrees with the Goldstone mode dispersion at small wave vector, the experimental mode velocity is slower than that calculated by previous theories by a factor about 0.55. A better agreement with the experimental data may possibly be achieved by taking the subband Landau level coupling into account due to the finiteness of the layer thickness. A novel coupling of quantum fluctuation to the tunneling is briefly discussed.Comment: 4 pages; published versio

    Coulombically Interacting Electrons in a One-dimensional Quantum Dot

    Full text link
    The spectral properties of up to four interacting electrons confined within a quasi one--dimensional system of finite length are determined by numerical diagonalization including the spin degree of freedom. The ground state energy is investigated as a function of the electron number and of the system length. The limitations of a description in terms of a capacitance are demonstrated. The energetically lowest lying excitations are physically explained as vibrational and tunneling modes. The limits of a dilute, Wigner-type arrangement of the electrons, and a dense, more homogeneous charge distribution are discussed.Comment: 10 pages (excl. Figures), Figures added in POSTSCRIPT, LaTe

    Infrared Excess in the Be Star Delta Scorpii

    Full text link
    We present infrared photometric observations of the Be binary system delta Scorpii obtained in 2006. The J,H and K magnitudes are the same within the errors compared to observations taken 10 months earlier. We derive the infrared excess from the observation and compare this to the color excess predicted by a radiative equilibrium model of the primary star and its circumstellar disk. We use a non-LTE computational code to model the gaseous envelope concentrated in the star's equatorial plane and calculate the expected spectral energy distribution and Halpha emission profile of the star with its circumstellar disk. Using the observed infrared excess of delta Sco, as well as Halpha spectroscopy bracketing the IR observations in time, we place constraints on the radial density distribution in the circumstellar disk. Because the disk exhibits variability in its density distribution, this work will be helpful in understanding its dynamics.Comment: 12 pages, 14 figures, to be published in PASP May 200

    Energy levels and far-infrared spectroscopy for two electrons in a semiconductor nanoring

    Full text link
    The effects of electron-electron interaction of a two-electron nanoring on the energy levels and far-infrared (FIR) spectroscopy have been investigated based on a model calculation which is performed within the exactly numerical diagonalization. It is found that the interaction changes the energy spectra dramatically, and also shows significant influence on the FIR spectroscopy. The crossings between the lowest spin-singlet and triplet states induced by the coulomb interaction are clearly revealed. Our results are related to the experiment recently carried out by A. Lorke et al. [Phys. Rev. Lett. 84, 2223 (2000)].Comment: 17 pages, 6 figures, revised and accepted by Phys. Rev. B (Dec. 15

    Persistent Currents in Small, Imperfect Hubbard Rings

    Full text link
    We have done a study with small, imperfect Hubbard rings with exact diagonalization. The results for few-electron rings show, that the imperfection, whether localized or not, nearly always decrease, but can also \emph{increase} the persistent current, depending on the character of the imperfection and the on-site interaction. The calculations are generally in agreement with more specialized studies. In most cases the electron spin plays an important role.Comment: 6 pages, 4 figure

    Maternal and child cytokine relationship in early life is not altered by cytokine gene polymorphisms

    Get PDF
    The development of immune responses is influenced by the interaction between environmental and genetic factors. Our previous study showed a close association between maternal and young infant’s cytokine responses. The question is how this association evolves over time and the contribution of genetic polymorphisms to this association. Five cytokines in mitogen-stimulated whole blood culture were measured from pregnant mothers and their children aged 2, 5, 12, 24 and 48 months. Cytokine gene polymorphisms were determined in both mothers and children. High production of maternal interleukin (IL)-10, tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) was significantly associated with higher levels of the corresponding cytokines in their children at 2 months (T2), but the association decreased over time. Maternal single-nucleotide polymorphism (SNP) in IFN-γ gene, rs3181032, was found to be associated with child’s IFN-γ levels at T2 only, whereas maternal IL-10 rs4579758 and child’s TNF-α rs13215091 were associated with child’s corresponding cytokines at later ages but not at T2. In the final models including the gene polymorphisms, maternal cytokines were still the strongest determinant of child cytokines. Maternal cytokine during pregnancy, which could be a proxy for child’s environmental factors, showed its highest impact at early age, with no or little influence from genetic factors
    corecore