1,425 research outputs found

    Toward an Energy Efficient Language and Compiler for (Partially) Reversible Algorithms

    Full text link
    We introduce a new programming language for expressing reversibility, Energy-Efficient Language (Eel), geared toward algorithm design and implementation. Eel is the first language to take advantage of a partially reversible computation model, where programs can be composed of both reversible and irreversible operations. In this model, irreversible operations cost energy for every bit of information created or destroyed. To handle programs of varying degrees of reversibility, Eel supports a log stack to automatically trade energy costs for space costs, and introduces many powerful control logic operators including protected conditional, general conditional, protected loops, and general loops. In this paper, we present the design and compiler for the three language levels of Eel along with an interpreter to simulate and annotate incurred energy costs of a program.Comment: 17 pages, 0 additional figures, pre-print to be published in The 8th Conference on Reversible Computing (RC2016

    ASMs and Operational Algorithmic Completeness of Lambda Calculus

    Get PDF
    We show that lambda calculus is a computation model which can step by step simulate any sequential deterministic algorithm for any computable function over integers or words or any datatype. More formally, given an algorithm above a family of computable functions (taken as primitive tools, i.e., kind of oracle functions for the algorithm), for every constant K big enough, each computation step of the algorithm can be simulated by exactly K successive reductions in a natural extension of lambda calculus with constants for functions in the above considered family. The proof is based on a fixed point technique in lambda calculus and on Gurevich sequential Thesis which allows to identify sequential deterministic algorithms with Abstract State Machines. This extends to algorithms for partial computable functions in such a way that finite computations ending with exceptions are associated to finite reductions leading to terms with a particular very simple feature.Comment: 37 page

    Assessment of the effectiveness of the EUROFORGEN NAME and Precision ID Ancestry panel markers for ancestry investigations

    Get PDF
    The EUROFORGEN NAME panel is a regional ancestry panel designed to differentiate individuals from the Middle East, North Africa, and Europe. The first version of the panel was developed for the MassARRAY system and included 111 SNPs. Here, a custom AmpliSeq EUROFORGEN NAME panel with 102 of the original 111 loci was used to sequence 1098 individuals from 14 populations from Europe, the Middle East, North Africa, North-East Africa, and South-Central Asia. These samples were also sequenced with a global ancestry panel, the Precision ID Ancestry Panel. The GenoGeographer software was used to assign the AIM profiles to reference populations and calculate the weight of the evidence as likelihood ratios. The combination of the EUROFORGEN NAME and Precision ID Ancestry panels led to fewer ambiguous assignments, especially for individuals from the Middle East and South-Central Asia. The likelihood ratios showed that North African individuals could be separated from European and Middle Eastern individuals using the Precision ID Ancestry Panel. The separation improved with the addition of the EUROFORGEN NAME panel. The analyses also showed that the separation of Middle Eastern populations from European and South-Central Asian populations was challenging even when both panels were applied

    Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications

    Full text link
    Optical techniques are finding widespread use in analytical chemistry for chemical and bio-chemical analysis. During the past decade, there has been an increasing emphasis on miniaturization of chemical analysis systems and naturally this has stimulated a large effort in integrating microfluidics and optics in lab-on-a-chip microsystems. This development is partly defining the emerging field of optofluidics. Scaling analysis and experiments have demonstrated the advantage of micro-scale devices over their macroscopic counterparts for a number of chemical applications. However, from an optical point of view, miniaturized devices suffer dramatically from the reduced optical path compared to macroscale experiments, e.g. in a cuvette. Obviously, the reduced optical path complicates the application of optical techniques in lab-on-a-chip systems. In this paper we theoretically discuss how a strongly dispersive photonic crystal environment may be used to enhance the light-matter interactions, thus potentially compensating for the reduced optical path in lab-on-a-chip systems. Combining electromagnetic perturbation theory with full-wave electromagnetic simulations we address the prospects for achieving slow-light enhancement of Beer-Lambert-Bouguer absorption, photonic band-gap based refractometry, and high-Q cavity sensing.Comment: Invited paper accepted for the "Optofluidics" special issue to appear in Microfluidics and Nanofluidics (ed. Prof. David Erickson). 11 pages including 8 figure

    Specializing Interpreters using Offline Partial Deduction

    No full text
    We present the latest version of the Logen partial evaluation system for logic programs. In particular we present new binding-types, and show how they can be used to effectively specialise a wide variety of interpreters.We show how to achieve Jones-optimality in a systematic way for several interpreters. Finally, we present and specialise a non-trivial interpreter for a small functional programming language. Experimental results are also presented, highlighting that the Logen system can be a good basis for generating compilers for high-level languages

    Increased interferon alpha receptor 2 mRNA levels is associated with renal cell carcinoma metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interferon-α (IFN-α) is one of the central agents in immunotherapy for renal cell carcinoma (RCC) and binds to the IFN-α receptor (IFNAR). We investigated the role of IFNAR in RCC.</p> <p>Methods</p> <p>We quantified IFNAR mRNA expression in paired tumor and non-tumor samples from the surgical specimens of 103 consecutive patients with RCC using a real-time reverse transcription polymerase chain reaction (RT-PCR), and IFNAR2 protein using Western blotting.</p> <p>Results</p> <p>The absolute level of IFNAR1 and IFNAR2 mRNAs in tumor and non-tumor tissues did not correlate with the malignant and metastatic profiles. The relative yields of the PCR product from the tumor tissue to that from the corresponding non-tumor tissue (T/N) for the expression of IFNAR mRNAs were calculated. While the T/N ratio of IFNAR1 did not correlate with any factor, a high T/N ratio of IFNAR2 correlated with poor differentiation (<it>P </it>< 0.05), local invasion (<it>P </it>< 0.001), and metastasis (<it>P </it>< 0.0001). By multivariate analysis, a high T/N ratio of IFNAR2 predicted a shortened overall survival in all cases (<it>P </it>< 0.05) and a shorter disease-free survival in those without metastasis (M0; 68 cases, <it>P </it>< 0.05). Impressively, patients with a poorer response to IFN-α treatment had a higher IFNAR2 T/N ratio than those who had a good response (P < 0.05). IFNAR2c protein expression was higher in the primary tumors in patients with metastases (M1; 35 cases) compared to those without ( P < 0.0001).</p> <p>Conclusion</p> <p>IFNAR2 is associated with the progression of RCC.</p
    corecore