153 research outputs found

    Subchondral bone remodelling in osteoarthritis

    Get PDF
    Subchondral bone remodelling is an integral part of osteoarthritis and involves the development of subchondral sclerosis seen on plain imaging, along with osteophyte formation. The development of these changes is due to persistent abnormal mechanical stresses which create a cellular and biomolecular response to microfractures in the subchondral bone and osteochondral junction. An early sign is bone marrow lesions seen on MRI scanning. Healing can occur at this stage by correcting the abnormal loads. Persistence leads to what is thought to be a delayed union or nonunion response by the bone. Microfractures of the osteochondral junction, coupled with articular cartilage fissuring and loss, allows synovial fluid to penetrate the subchondral bone along with cytokines and other molecules reacting with the bone cells to increase the pathological effects. This review gives an overview of the current thoughts on subchondral bone remodelling in osteoarthritis that is aimed at orthopaedic surgeons to help in the understanding of the pathogenesis of osteoarthritis and the role of surgical management

    The associations between bariatric surgery and hip or knee arthroplasty, and hip or knee osteoarthritis: Propensity score-matched cohort studies.

    Get PDF
    To investigate the associations between bariatric surgery and hip or knee arthroplasty, and secondary care hip or knee osteoarthritis (OA). We performed cohort studies using data from Swedish nationwide healthcare registries. Patients aged 18-79 years who underwent bariatric surgery between 2006 and 2019 were matched on their propensity score (PS) to up to 2 obese patients ("unexposed episodes") in risk-set sampling. After a 1-year run-in period, episodes were followed in an "as-treated" approach. Using Cox proportional hazard regression, we calculated hazard ratios (HR) with 95% confidence intervals (CIs) of hip or knee arthroplasty overall and in subgroups of age, sex, joint location, arthroplasty type, bariatric surgery type, and by duration of follow-up if proportional hazard assumptions were violated. In a secondary cohort, we assessed the outcome incident secondary care hip or knee osteoarthritis (OA). Among 39'392 bariatric surgery episodes when compared to 61'085 ​PS-matched unexposed episodes (47'594 unique patients), the risk of hip or knee arthroplasty was strongest increased within the first three years of follow-up (HR 1.79, 95% CI 1.56-2.07), decreased thereafter, but remained elevated throughout follow-up. In a secondary cohort of 37'929 exposed when compared to 58'600 ​PS-matched unexposed episodes, the risk of hip or knee osteoarthritis was decreased (HR 0.84, 95% CI 0.79-0.90). Bariatric surgery is associated with increased risks of hip or knee arthroplasty, but also with decreased risks of secondary care OA. This contradiction supports the hypothesis that bariatric surgery may act as an enabler for hip or knee arthroplasty

    The potential use of microcalorimetry in rapid differentiation between septic arthritis and other causes of arthritis.

    Get PDF
    Current diagnostic methods in differentiating septic from non-septic arthritis are time-consuming (culture) or have limited sensitivity (Gram stain). Microcalorimetry is a novel method that can rapidly detect microorganisms by their heat production. We investigated the accuracy and time to detection of septic arthritis by using microcalorimetry. Patients older than 18 years of age with acute arthritis of native joints were prospectively included. Synovial fluid was aspirated and investigated by Gram stain, culture and microcalorimetry. The diagnosis of septic arthritis and non-septic arthritis were made by experienced rheumatologists or orthopaedic surgeons. Septic arthritis was diagnosed by considering the finding of acute arthritis together with findings such as positive Gram stain or positive culture of synovial fluid or positive blood culture. The sensitivity and specificity for diagnosing septic arthritis and the time to positivity of microcalorimetry were determined. Of 90 patients (mean age 64 years), nine had septic arthritis, of whom four (44 %) had positive Gram stain, six (67 %) positive synovial fluid culture and four (44 %) had positive blood culture. The sensitivity of microcalorimetry was 89 %, the specificity was 99 % and the mean detection time was 5.0 h (range, 2.2-8.0 h). Microcalorimetry is an accurate and rapid method for the diagnosis of septic arthritis. It has potential to be used in clinical practice in diagnosing septic arthritis

    Prospective clinical evaluation of a novel anatomic cuff for forearm crutches in patients with osteoarthritis.

    Get PDF
    The use of forearm crutches has been associated with pain and neuropraxia along the ulnar bone. Whilst anatomic grips have improved comfort of crutch walking, to date anatomic forearm cuffs have not been clinically evaluated. The aim of this clinical pilot study was to determine if the use of forearm crutches with anatomic cuffs reduces pain and increases comfort and function in long-term users of forearm crutches during a 4-week period. Prospective study in ten patients suffering from end-stage osteoarthritis of the lower extremity. All participants were long-term users of conventional forearm crutches. Participants used forearm crutches with an anatomically shaped cuff for 4-weeks. General health was assessed using the SF-36, and the crutches were evaluated using a newly developed questionnaire focusing on symptoms along the forearm. Pain and paresthesia along the forearms decreased by 3.3 points (95% confidence interval difference (CI): [-5.0; -1.6], p = .004) and 3.5 points (95%CI: [-5.1; -1.9], p = .002), respectively, after using the crutches with the new anatomic cuff for 4 weeks. Comfort and sense of security of crutch use increased by 3.0 points (95%CI: [1.3; 4.7], p = .007) and 2.4 points (95%CI: [0.7; 4.1], p = .024). Cross-correlation analysis revealed correlations among items in the same item category and no correlations between items of different item categories of the new questionnaires. An anatomically shaped cuff increases comfort of forearm crutches. Further research should confirm long-term clinical improvement. This study was registered retrospectively in ISRCTN (TRN: ISRCTN 11135150 ) on 14/02/2017

    Imaging of ανβ3 integrin expression in rheumatoid arthritis with [68Ga]Ga-NODAGA-RGDyk PET/CT in comparison to [18F]FDG PET/CT

    Get PDF
    [Ga-68] Ga-NODAGA-RGDyk PET/CT and [F-18] FDG PET/CT were performed in a 65-year-old woman during the work-up of a squamous cell carcinoma of the tongue within a clinical study protocol. Images revealed both tracers' uptake in the primary tumor and cervical lymph nodes, but also bilaterally in the shoulders, elbows, wrists, metacarpophalangeal, interphalangeal, and hip joints. The patient had been diagnosed with rheumatoid arthritis 8 years prior to the examination. Images showed a significantly higher [F-18] FDG than [Ga-68] Ga-NODAGA-RGDyk uptake in primary tumor and cervical lymph nodes. However, the patient with moderately active rheumatoid arthritis had similar levels of [Ga-68]Ga-NODAGA-RGDyk and [F-18] FDG uptake in the involved joints, but with no [Ga-68] Ga-NODAGA-RGDyk uptake in the surrounding muscles, unlike with [F-18]FDG. Our case suggests that [Ga-68]Ga-NODAGA-RGDyk PET/CT allows imaging of integrins expression in rheumatoid arthritis, including integrins expressed in synovial angiogenesis, with potentially a better signal-to-noise ratio than on [F-18]FDG PET/CT. (C) 2021 The Author(s). Published by Elsevier Masson SAS

    A next-generation inverse-geometry spallation-driven ultracold neutron source

    Full text link
    The physics model of a next-generation spallation-driven high-current ultracold neutron (UCN) source capable of delivering an extracted UCN rate of around an-order-of-magnitude higher than the strongest proposed sources, and around three-orders-of-magnitude higher than existing sources, is presented. This UCN-current-optimized source would dramatically improve cutting-edge UCN measurements that are currently statistically limited. A novel "Inverse Geometry" design is used with 40 L of superfluid 4^4He (He-II), which acts as a converter of cold neutrons (CNs) to UCNs, cooled with state-of-the-art sub-cooled cryogenic technology to \sim1.6 K. Our design is optimized for a 100 W maximum heat load constraint on the He-II and its vessel. In our geometry, the spallation target is wrapped symmetrically around the UCN converter to permit raster scanning the proton beam over a relatively large volume of tungsten spallation target to reduce the demand on the cooling requirements, which makes it reasonable to assume that water edge-cooling only is sufficient. Our design is refined in several steps to reach PUCN=2.1×109/P_{UCN}=2.1\times10^9\,/s under our other restriction of 1 MW maximum available proton beam power. We then study effects of the He-II scattering kernel as well as reductions in PUCNP_{UCN} due to pressurization to reach PUCN=1.8×109/P_{UCN}=1.8\times10^9\,/s. Finally, we provide a design for the UCN extraction system that takes into account the required He-II heat transport properties and implementation of a He-II containment foil that allows UCN transmission. We estimate a total useful UCN current from our source of Ruse=5×108/R_{use}=5\times10^8\,/s from a 18 cm diameter guide 5 m from the source. Under a conservative "no return" approximation, this rate can produce an extracted density of >1×104/>1\times10^4\,/cm3^3 in <<1000~L external experimental volumes with a 58^{58}Ni (335 neV) cut-off potential.Comment: Submitted to Journal of Applied Physic

    Are patients with hypermobile Ehlers-Danlos syndrome or hypermobility spectrum disorder so different?

    Get PDF
    Diagnosing hypermobile Ehlers-Danlos syndrome (hEDS) remains challenging, despite new 2017 criteria. Patients not fulfilling these criteria are considered to have hypermobile spectrum disorder (HSD). Our first aim was to evaluate whether patients hEDS were more severely affected and had higher prevalence of extra-articular manifestations than HSD. Second aim was to compare their outcome after coordinated physical therapy. Patients fulfilling hEDS/HSD criteria were included in this real-life prospective cohort (November 2017/April 2019). They completed a 16-item Clinical Severity Score (CSS-16). We recorded bone involvement, neuropathic pain (DN4) and symptoms of mast cell disorders (MCAS) as extra-articular manifestations. After a standardized initial evaluation (T0), all patients were offered the same coordinated physical therapy, were followed-up at 6 months (T1) and at least 1 year later (T2), and were asked whether or not their condition had subjectively improved at T2. We included 97 patients (61 hEDS, 36 HSD). Median age was 40 (range 18-73); 92.7% were females. Three items from CSS-16 (pain, motricity problems, and bleeding) were significantly more severe with hEDS than HSD. Bone fragility, neuropathic pain and MCAS were equally prevalent. At T2 (20 months [range 18-26]) 54% of patients reported improvement (no difference between groups). On multivariable analysis, only family history of hypermobility predicted (favorable) outcome (p = 0.01). hEDS and HDS patients showed similar disease severity score except for pain, motricity problems and bleeding, and similar spectrum of extra-articular manifestations. Long-term improvement was observed in &gt; 50% of patients in both groups. These results add weight to a clinical pragmatic proposition to consider hEDS/HSD as a single entity that requires the same treatments

    CD11b Signaling Prevents Chondrocyte Mineralization and Attenuates the Severity of Osteoarthritis.

    Get PDF
    Osteoarthritis (OA) is a progressive joint disease that is strongly associated with calcium-containing crystal formation (mineralization) by chondrocytes leading ultimately to cartilage calcification. However, this calcification process is poorly understood and treatments targeting the underlying disease mechanisms are lacking. The CD11b/CD18 integrin (Mac-1 or αMβ2), a member of the beta 2 integrin family of adhesion receptors, is critically involved in the development of several inflammatory diseases, including rheumatoid arthritis and systemic lupus erythematosus. We found that in a collagen-induced arthritis, CD11b-deficient mice exhibited increased cartilage degradation compared to WT control animals. However, the functional significance of CD11b integrin signaling in the pathophysiology of chondrocytes remains unknown. CD11b expression was found in the extracellular matrix and in chondrocytes in both healthy and damaged human and murine articular cartilage. Primary murine CD11b KO chondrocytes showed increased mineralization when induced in vitro by secondary calciprotein particles (CPP) and quantified by Alizarin Red staining. This increased propensity to mineralize was associated with an increased alkaline phosphatase (Alp) expression (measured by qRT-PCR and activity assay) and an enhanced secretion of the pro-mineralizing IL-6 cytokine compared to control wild-type cells (measured by ELISA). Accordingly, addition of an anti-IL-6 receptor antibody to CD11b KO chondrocytes reduced significantly the calcification and identified IL-6 as a pro-mineralizing factor in these cells. In the same conditions, the ratio of qRT-PCR expression of collagen X over collagen II, and that of Runx2 over Sox9 (both ratio being indexes of chondrocyte hypertrophy) were increased in CD11b-deficient cells. Conversely, the CD11b activator LA1 reduced chondrocyte mineralization, Alp expression, IL-6 production and collagen X expression. In the meniscectomy (MNX) model of murine knee osteoarthritis, deficiency of CD11b led to more severe OA (OARSI scoring of medial cartilage damage in CD11b: 5.6 ± 1.8, in WT: 1.2 ± 0.5, p &lt; 0.05, inflammation in CD11b: 2.8 ± 0.2, in WT: 1.4 ± 0.5). In conclusion, these data demonstrate that CD11b signaling prevents chondrocyte hypertrophy and chondrocyte mineralization in vitro and has a protective role in models of OA in vivo

    Alterations of Subchondral Bone Progenitor Cells in Human Knee and Hip Osteoarthritis Lead to a Bone Sclerosis Phenotype.

    Get PDF
    Subchondral bone tissue plays a key role in the initiation and progression of human and experimental osteoarthritis and has received considerable interest as a treatment target. Elevated bone turnover and remodeling leads to subchondral bone sclerosis that is characterized by an increase in bone material that is less mineralized. The aim of this study was to investigate whether perturbations in subchondral bone-resident progenitor cells might play a role in aberrant bone formation in osteoarthritis. Colony formation assays indicated similar clonogenicity of progenitor cells from non-sclerotic and sclerotic subchondral trabecular bone tissues of osteoarthritic knee and hip joints compared with controls from iliac crest bone. However, the osteogenic potential at the clonal level was approximately two-fold higher in osteoarthritis than controls. An osteogenic differentiation assay indicated an efficient induction of alkaline phosphatase activity but blunted in vitro matrix mineralization irrespective of the presence of sclerosis. Micro-computed tomography and histology demonstrated the formation of de novo calcified tissues by osteoblast-like cells in an ectopic implantation model. The expression of bone sialoprotein, a marker for osteoblast maturation and mineralization, was significantly less in sclerotic progenitor cells. Perturbation of resident progenitor cell function is associated with subchondral bone sclerosis and may be a treatment target for osteoarthritis
    corecore