1,438 research outputs found

    Exact trace formulae for a class of one-dimensional ray-splitting systems

    Get PDF
    Based on quantum graph theory we establish that the ray-splitting trace formula proposed by Couchman {\it et al.} (Phys. Rev. A {\bf 46}, 6193 (1992)) is exact for a class of one-dimensional ray-splitting systems. Important applications in combinatorics are suggested.Comment: 14 pages, 3 figure

    Uniform approximations for non-generic bifurcation scenatios including bifurcations of ghost orbits

    Full text link
    Gutzwiller's trace formula allows interpreting the density of states of a classically chaotic quantum system in terms of classical periodic orbits. It diverges when periodic orbits undergo bifurcations, and must be replaced with a uniform approximation in the vicinity of the bifurcations. As a characteristic feature, these approximations require the inclusion of complex ``ghost orbits''. By studying an example taken from the Diamagnetic Kepler Problem, viz. the period-quadrupling of the balloon-orbit, we demonstrate that these ghost orbits themselves can undergo bifurcations, giving rise to non-generic complicated bifurcation scenarios. We extend classical normal form theory so as to yield analytic descriptions of both bifurcations of real orbits and ghost orbit bifurcations. We then show how the normal form serves to obtain a uniform approximation taking the ghost orbit bifurcation into account. We find that the ghost bifurcation produces signatures in the semiclassical spectrum in much the same way as a bifurcation of real orbits does.Comment: 56 pages, 21 figure, LaTeX2e using amsmath, amssymb, epsfig, and rotating packages. To be published in Annals of Physic

    Anomalous power law of quantum reversibility for classically regular dynamics

    Get PDF
    The Loschmidt Echo M(t) (defined as the squared overlap of wave packets evolving with two slightly different Hamiltonians) is a measure of quantum reversibility. We investigate its behavior for classically quasi-integrable systems. A dominant regime emerges where M(t) ~ t^{-alpha} with alpha=3d/2 depending solely on the dimension d of the system. This power law decay is faster than the result ~ t^{-d} for the decay of classical phase space densities

    Semiclassical theory of spin-orbit interactions using spin coherent states

    Get PDF
    We formulate a semiclassical theory for systems with spin-orbit interactions. Using spin coherent states, we start from the path integral in an extended phase space, formulate the classical dynamics of the coupled orbital and spin degrees of freedom, and calculate the ingredients of Gutzwiller's trace formula for the density of states. For a two-dimensional quantum dot with a spin-orbit interaction of Rashba type, we obtain satisfactory agreement with fully quantum-mechanical calculations. The mode-conversion problem, which arose in an earlier semiclassical approach, has hereby been overcome.Comment: LaTeX (RevTeX), 4 pages, 2 figures, accepted for Physical Review Letters; final version (v2) for publication with minor editorial change

    The effect of short ray trajectories on the scattering statistics of wave chaotic systems

    Full text link
    In many situations, the statistical properties of wave systems with chaotic classical limits are well-described by random matrix theory. However, applications of random matrix theory to scattering problems require introduction of system specific information into the statistical model, such as the introduction of the average scattering matrix in the Poisson kernel. Here it is shown that the average impedance matrix, which also characterizes the system-specific properties, can be expressed in terms of classical trajectories that travel between ports and thus can be calculated semiclassically. Theoretical results are compared with numerical solutions for a model wave-chaotic system

    Significance of Ghost Orbit Bifurcations in Semiclassical Spectra

    Full text link
    Gutzwiller's trace formula for the semiclassical density of states in a chaotic system diverges near bifurcations of periodic orbits, where it must be replaced with uniform approximations. It is well known that, when applying these approximations, complex predecessors of orbits created in the bifurcation ("ghost orbits") can produce pronounced signatures in the semiclassical spectra in the vicinity of the bifurcation. It is the purpose of this paper to demonstrate that these ghost orbits themselves can undergo bifurcations, resulting in complex, nongeneric bifurcation scenarios. We do so by studying an example taken from the Diamagnetic Kepler Problem, viz. the period quadrupling of the balloon orbit. By application of normal form theory we construct an analytic description of the complete bifurcation scenario, which is then used to calculate the pertinent uniform approximation. The ghost orbit bifurcation turns out to produce signatures in the semiclassical spectrum in much the same way as a bifurcation of real orbits would.Comment: 20 pages, 6 figures, LATEX (IOP style), submitted to J. Phys.

    Scale Anomaly and Quantum Chaos in the Billiards with Pointlike Scatterers

    Full text link
    We argue that the random-matrix like energy spectra found in pseudointegrable billiards with pointlike scatterers are related to the quantum violation of scale invariance of classical analogue system. It is shown that the behavior of the running coupling constant explains the key characteristics of the level statistics of pseudointegrable billiards.Comment: 10 pages, RevTex file, uuencode

    Nonergodicity of entanglement and its complementary behavior to magnetization in infinite spin chain

    Full text link
    We consider the problem of the validity of a statistical mechanical description of two-site entanglement in an infinite spin chain described by the XY model Hamiltonian. We show that the two-site entanglement of the state, evolved from the initial equilibrium state, after a change of the magnetic field, does not approach its equilibrium value. This suggests that two-site entanglement, like (single-site) magnetization, is a nonergodic quantity in this model. Moreover we show that these two nonergodic quantities behave in a complementary way.Comment: 4 pages, 2 eps figures, RevTeX4; v2: Published versio

    Symmetry Decomposition of Chaotic Dynamics

    Full text link
    Discrete symmetries of dynamical flows give rise to relations between periodic orbits, reduce the dynamics to a fundamental domain, and lead to factorizations of zeta functions. These factorizations in turn reduce the labor and improve the convergence of cycle expansions for classical and quantum spectra associated with the flow. In this paper the general formalism is developed, with the NN-disk pinball model used as a concrete example and a series of physically interesting cases worked out in detail.Comment: CYCLER Paper 93mar01

    Alternative method to find orbits in chaotic systems

    Full text link
    We present here a new method which applies well ordered symbolic dynamics to find unstable periodic and non-periodic orbits in a chaotic system. The method is simple and efficient and has been successfully applied to a number of different systems such as the H\'enon map, disk billiards, stadium billiard, wedge billiard, diamagnetic Kepler problem, colinear Helium atom and systems with attracting potentials. The method seems to be better than earlier applied methods.Comment: 5 pages, uuencoded compressed tar PostScript fil
    • …
    corecore