Abstract

Gutzwiller's trace formula allows interpreting the density of states of a classically chaotic quantum system in terms of classical periodic orbits. It diverges when periodic orbits undergo bifurcations, and must be replaced with a uniform approximation in the vicinity of the bifurcations. As a characteristic feature, these approximations require the inclusion of complex ``ghost orbits''. By studying an example taken from the Diamagnetic Kepler Problem, viz. the period-quadrupling of the balloon-orbit, we demonstrate that these ghost orbits themselves can undergo bifurcations, giving rise to non-generic complicated bifurcation scenarios. We extend classical normal form theory so as to yield analytic descriptions of both bifurcations of real orbits and ghost orbit bifurcations. We then show how the normal form serves to obtain a uniform approximation taking the ghost orbit bifurcation into account. We find that the ghost bifurcation produces signatures in the semiclassical spectrum in much the same way as a bifurcation of real orbits does.Comment: 56 pages, 21 figure, LaTeX2e using amsmath, amssymb, epsfig, and rotating packages. To be published in Annals of Physic

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 28/03/2019