179 research outputs found

    Role of dispersion of vanadia on SBA-15 in the oxidative dehydrogenation of propane

    Get PDF
    A series of vanadia catalysts supported on the mesoporous silica SBA-15 are synthesized using an automated laboratory reactor. The catalysts contain from 0.6 up to 13.6V atoms/nm2 and are structurally characterized by various techniques (BET, XRD, SEM, TEM, Raman, IR, UV/Vis). Samples containing up to 3.1V/nm2 are structurally rather similar. They all contain a mixture of tetrahedral (VOx)n species, both monomeric and oligomeric. The ratio of monomeric and oligomeric species depends on the vanadia loading. At the highest loading of 13.6V/nm2, in addition to tetrahedral (VOx)n, also substantial amounts of three-dimensional, bulk-like V2O5 are present in the catalyst. The structural similarity of the low-loaded catalysts is reflected in their alike catalytical activity during the oxidative dehydrogenation (ODH) of propane between 380 and 480 °C. Propene, CO, and CO2 are formed as reaction products, while neither the formation of ethene nor acrolein or acrylic acid is observed in other than trace amounts. The activation energy for ODH of propane is not, vert, similar140 kJ/mol. The catalyst with the highest loading yields varying activation energies for different reaction conditions, which is probably related to rearrangements between bulk-like and dispersed, two-dimensional (VOx)n. Rather than the monomer to oligomer ratio, the ratio of two-dimensional to three-dimensional vanadia seems to be crucial for the catalytic properties of silica supported vanadia in the ODH of propane

    Adaptive Horizon Model Predictive Control and Al'brekht's Method

    Get PDF
    A standard way of finding a feedback law that stabilizes a control system to an operating point is to recast the problem as an infinite horizon optimal control problem. If the optimal cost and the optmal feedback can be found on a large domain around the operating point then a Lyapunov argument can be used to verify the asymptotic stability of the closed loop dynamics. The problem with this approach is that is usually very difficult to find the optimal cost and the optmal feedback on a large domain for nonlinear problems with or without constraints. Hence the increasing interest in Model Predictive Control (MPC). In standard MPC a finite horizon optimal control problem is solved in real time but just at the current state, the first control action is implimented, the system evolves one time step and the process is repeated. A terminal cost and terminal feedback found by Al'brekht's methoddefined in a neighborhood of the operating point is used to shorten the horizon and thereby make the nonlinear programs easier to solve because they have less decision variables. Adaptive Horizon Model Predictive Control (AHMPC) is a scheme for varying the horizon length of Model Predictive Control (MPC) as needed. Its goal is to achieve stabilization with horizons as small as possible so that MPC methods can be used on faster and/or more complicated dynamic processes.Comment: arXiv admin note: text overlap with arXiv:1602.0861

    Sexually divergent expression of active and passive conditioned fear responses in rats

    Get PDF
    Traditional rodent models of Pavlovian fear conditioning assess the strength of learning by quantifying freezing responses. However, sole reliance on this measure includes the de facto assumption that any locomotor activity reflects an absence of fear. Consequently, alternative expressions of associative learning are rarely considered. Here we identify a novel, active fear response ('darting') that occurs primarily in female rats. In females, darting exhibits the characteristics of a learned fear behavior, appearing during the CS period as conditioning proceeds and disappearing from the CS period during extinction. This finding motivates a reinterpretation of rodent fear conditioning studies, particularly in females, and it suggests that conditioned fear behavior is more diverse than previously appreciated. Moreover, rats that darted during initial fear conditioning exhibited lower freezing during the second day of extinction testing, suggesting that females employ distinct and adaptive fear response strategies that improve long-term outcomes

    Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery

    Get PDF
    Background Bone grafting has been considered the gold standard for hard tissue reconstructive surgery and is widely used for large mandibular defect reconstruction. However, the midface encompasses delicate structures that are surrounded by a complex bone architecture, which makes bone grafting using traditional methods very challenging. Three-dimensional (3D) bioprinting is a developing technology that is derived from the evolution of additive manufacturing. It enables precise development of a scaffold from different available biomaterials that mimic the shape, size, and dimension of a defect without relying only on the surgeon’s skills and capabilities, and subsequently, may enhance surgical outcomes and, in turn, patient satisfaction and quality of life. Review This review summarizes different biomaterial classes that can be used in 3D bioprinters as bioinks to fabricate bone scaffolds, including polymers, bioceramics, and composites. It also describes the advantages and limitations of the three currently used 3D bioprinting technologies: inkjet bioprinting, micro-extrusion, and laser-assisted bioprinting. Conclusions Although 3D bioprinting technology is still in its infancy and requires further development and optimization both in biomaterials and techniques, it offers great promise and potential for facial reconstruction with improved outcome

    Biofabrication: an overview of the approaches used for printing of living cells

    Get PDF
    The development of cell printing is vital for establishing biofabrication approaches as clinically relevant tools. Achieving this requires bio-inks which must not only be easily printable, but also allow controllable and reproducible printing of cells. This review outlines the general principles and current progress and compares the advantages and challenges for the most widely used biofabrication techniques for printing cells: extrusion, laser, microvalve, inkjet and tissue fragment printing. It is expected that significant advances in cell printing will result from synergistic combinations of these techniques and lead to optimised resolution, throughput and the overall complexity of printed constructs

    3D Electron Diffraction for Chemical Analysis: Instrumentation Developments and Innovative Applications

    No full text
    In the past few years, many exciting papers reported results based on crystal structure determination by electron diffraction. The aim of this review is to provide general and practical information to structural chemists interested in stepping into this emerging field. We discuss technical characteristics of electron microscopes for research units that would like to acquire their own instrumentation, as well as those practical aspects that appear different between X-ray and electron crystallography. We also include a discussion about applications where electron crystallography provides information that is different, and possibly complementary, with respect to what is available from X-ray crystallography
    • …
    corecore