78 research outputs found
Quasiparticle Interactions for f-Impurity Anderson Model with Crystalline-Electric-Field: Numerical Renormalization Group Study
The aspect of the quasiparticle interaction of a local Fermi liquid, the
impurity version of f-based heavy fermions, is studied by the Wilson
numerical renormalization group method. In particular, the case of the
f-singlet crystalline-electric-field ground state is investigated assuming
the case of UPt with the hexagonal symmetry. It is found that the
interorbital interaction becomes larger than the intraorbital one in contrast
to the case of the bare Coulomb interaction for the parameters relevant to
UPt. This result offers us a basis to construct a microscopic theory of the
superconductivity of UPt where the interorbital interactions are expected
to play important roles.Comment: 9 pages, 5 figure
Magnetic state in URu2Si2, UPd2Al3 and UNi2Al3 probed by point contacts
The antiferromagnetic (AFM) state has been investigated in the three
heavy-fermion compounds URu2Si2, UPd2Al3, and UNi2Al3 by measuring dV/dI(V)
curves of point contacts at different temperatures (1.5-20 K) and magnetic
fields (0-28 T). The zero-bias maximum in dV/dI(V) for URu2Si2 points to a
partially gapped Fermi-surface related to the itinerant nature of the AFM state
contrary to UPd2Al3 where analogous features have not been found. The AFM state
in UNi2Al3 has more similarities with URu2Si2. For URu2Si2, the same critical
field of about 40 T along the easy c axis is found for all features in dV/dI(V)
corresponding to the Neel temperature, the gap in the electronic density of
states, and presumably the ordered moments.Comment: 10 pages incl. 5 figures, LaTex 2
Staggered Pairing Phenomenology for UPd_2Al_3 and UNi_2Al_3
We apply the staggered-pairing Ginzburg-Landau phenomenology to describe
superconductivity in UPd_2Al_3 and UNi_2Al_3. The phenomenology was applied
successfully to UPt_3 so it explains why these materials have qualitatively
different superconducting phase diagrams although they have the same
point-group symmetry. UPd_2Al_3 and UNi_2Al_3 have a two-component
superconducting order parameter transforming as an H-point irreducible
representation of the space group. Staggered superconductivity can induce
charge-density waves characterized by new Bragg peaks suggesting experimental
tests of the phenomenology.Comment: 4 pages, REVTeX, 2 Postscript figure
Quasiparticle spin susceptibility in heavy-fermion superconductors : An NMR study compared with specific heat results
Quasi-particle spin susceptibility () for various heavy-fermion
(HF) superconductors are discussed on the basis of the experimental results of
electronic specific heat (), NMR Knight shift () and NMR
relaxation rate () within the framework of the Fermi liquid model for a
Kramers doublet crystal electric field (CEF) ground state.
is calculated from the enhanced Sommerfeld coefficient and
from the quasi-particle Korringa relation
via the relation of
where is the hyperfine
coupling constant, the Abogadoro's number and the Bohr magneton.
For the even-parity (spin-singlet) superconductors CeCuSi, CeCoIn
and UPdAl, the fractional decrease in the Knight shift, , below the superconducting transition temperature () is due to
the decrease of the spin susceptibility of heavy quasi-particle estimated
consistently from and . This result
allows us to conclude that the heavy quasi-particles form the spin-singlet
Cooper pairs in CeCuSi, CeCoIn and UPdAl. On the other
hand, no reduction in the Knight shift is observed in UPt and
UNiAl, nevertheless the estimated values of and
are large enough to be probed experimentally. The odd-parity
superconductivity is therefore concluded in these compounds. The NMR result
provides a convincing way to classify the HF superconductors into either even-
or odd- parity paring together with the identification for the gap structure,
as long as the system has Kramers degeneracy.Comment: 11 pages, 3 tables, 5 figures, RevTex4(LaTex2e
On the thermoelectricity of correlated electrons in the zero-temperature limit
The Seebeck coefficient of a metal is expected to display a linear
temperature-dependence in the zero-temperature limit. To attain this regime, it
is often necessary to cool the system well below 1K. We put under scrutiny the
magnitude of this term in different families of strongly-interacting electronic
systems. For a wide range of compounds (including heavy-fermion, organic and
various oxide families) a remarkable correlation between this term and the
electronic specific heat is found. We argue that a dimensionless ratio relating
these two signatures of mass renormalisation contains interesting information
about the ground state of each system. The absolute value of this ratio remains
close to unity in a wide range of strongly-correlated electron systems.Comment: 15 pages, including two figure
Objective quantification of nanoscale protein distributions
Nanoscale distribution of molecules within small subcellular compartments of neurons critically influences their functional roles. Although, numerous ways of analyzing the spatial arrangement of proteins have been described, a thorough comparison of their effectiveness is missing. Here we present an open source software, GoldExt, with a plethora of measures for quantification of the nanoscale distribution of proteins in subcellular compartments (e.g. synapses) of nerve cells. First, we compared the ability of five different measures to distinguish artificial uniform and clustered patterns from random point patterns. Then, the performance of a set of clustering algorithms was evaluated on simulated datasets with predefined number of clusters. Finally, we applied the best performing methods to experimental data, and analyzed the nanoscale distribution of different pre- and postsynaptic proteins, revealing random, uniform and clustered sub-synaptic distribution patterns. Our results reveal that application of a single measure is sufficient to distinguish between different distributions
Attenuating Sulfidogenesis in a Soured Continuous Flow Column System With Perchlorate Treatment
Hydrogen sulfide production by sulfate reducing bacteria (SRB) is the primary cause of oil reservoir souring. Amending environments with chlorate or perchlorate [collectively denoted (per)chlorate] represents an emerging technology to prevent the onset of souring. Recent studies with perchlorate reducing bacteria (PRB) monocultures demonstrated that they have the innate capability to enzymatically oxidize sulfide, thus PRB may offer an effective means of reversing souring. (Per)chlorate may be effective by (i) direct toxicity to SRB; (ii) competitive exclusion of SRB by PRB; or (iii) reversal of souring through re-oxidation of sulfide by PRB. To determine if (per)chlorate could sweeten a soured column system and assign a quantitative value to each of the mechanisms we treated columns flooded with San Francisco bay water with temporally decreasing amounts (50, 25, and 12.5 mM) of (per)chlorate. Geochemistry and the microbial community structure were monitored and a reactive transport model was developed, Results were compared to columns treated with nitrate or untreated. Souring was reversed by all treatments at 50 mM but nitrate-treated columns began to re-sour when treatment concentrations decreased (25 mM). Re-souring was only observed in (per)chlorate-treated columns when concentrations were decreased to 12.5 mM and the extent of re-souring was less than the control columns. Microbial community analyses indicated treatment-specific community shifts. Nitrate treatment resulted in a distinct community enriched in genera known to perform sulfur cycling metabolisms and genera capable of nitrate reduction. (Per)chlorate treatment enriched for (per)chlorate reducing bacteria. (Per)chlorate treatments only enriched for sulfate reducing organisms when treatment levels were decreased. A reactive transport model of perchlorate treatment was developed and a baseline case simulation demonstrated that the model provided a good fit to the effluent geochemical data. Subsequent simulations teased out the relative role that each of the three perchlorate inhibition mechanisms played during different phases of the experiment. These results indicate that perchlorate addition is an effective strategy for both souring prevention and souring reversal. It provides insight into which organisms are involved, and illuminates the interactive effects of the inhibition mechanisms, further highlighting the versatility of perchlorate as a sweetening agent
- …
