594 research outputs found

    Stochastic models which separate fractal dimension and Hurst effect

    Get PDF
    Fractal behavior and long-range dependence have been observed in an astonishing number of physical systems. Either phenomenon has been modeled by self-similar random functions, thereby implying a linear relationship between fractal dimension, a measure of roughness, and Hurst coefficient, a measure of long-memory dependence. This letter introduces simple stochastic models which allow for any combination of fractal dimension and Hurst exponent. We synthesize images from these models, with arbitrary fractal properties and power-law correlations, and propose a test for self-similarity.Comment: 8 pages, 2 figure

    Criteria of efficiency for conformal prediction

    Get PDF
    We study optimal conformity measures for various criteria of efficiency of classification in an idealised setting. This leads to an important class of criteria of efficiency that we call probabilistic; it turns out that the most standard criteria of efficiency used in literature on conformal prediction are not probabilistic unless the problem of classification is binary. We consider both unconditional and label-conditional conformal prediction.Comment: 31 page

    Using conditional kernel density estimation for wind power density forecasting

    Get PDF
    Of the various renewable energy resources, wind power is widely recognized as one of the most promising. The management of wind farms and electricity systems can benefit greatly from the availability of estimates of the probability distribution of wind power generation. However, most research has focused on point forecasting of wind power. In this paper, we develop an approach to producing density forecasts for the wind power generated at individual wind farms. Our interest is in intraday data and prediction from 1 to 72 hours ahead. We model wind power in terms of wind speed and wind direction. In this framework, there are two key uncertainties. First, there is the inherent uncertainty in wind speed and direction, and we model this using a bivariate VARMA-GARCH (vector autoregressive moving average-generalized autoregressive conditional heteroscedastic) model, with a Student t distribution, in the Cartesian space of wind speed and direction. Second, there is the stochastic nature of the relationship of wind power to wind speed (described by the power curve), and to wind direction. We model this using conditional kernel density (CKD) estimation, which enables a nonparametric modeling of the conditional density of wind power. Using Monte Carlo simulation of the VARMA-GARCH model and CKD estimation, density forecasts of wind speed and direction are converted to wind power density forecasts. Our work is novel in several respects: previous wind power studies have not modeled a stochastic power curve; to accommodate time evolution in the power curve, we incorporate a time decay factor within the CKD method; and the CKD method is conditional on a density, rather than a single value. The new approach is evaluated using datasets from four Greek wind farms

    Computing Topology Preservation of RBF Transformations for Landmark-Based Image Registration

    Full text link
    In image registration, a proper transformation should be topology preserving. Especially for landmark-based image registration, if the displacement of one landmark is larger enough than those of neighbourhood landmarks, topology violation will be occurred. This paper aim to analyse the topology preservation of some Radial Basis Functions (RBFs) which are used to model deformations in image registration. Mat\'{e}rn functions are quite common in the statistic literature (see, e.g. \cite{Matern86,Stein99}). In this paper, we use them to solve the landmark-based image registration problem. We present the topology preservation properties of RBFs in one landmark and four landmarks model respectively. Numerical results of three kinds of Mat\'{e}rn transformations are compared with results of Gaussian, Wendland's, and Wu's functions

    A simple method for finite range decomposition of quadratic forms and Gaussian fields

    Full text link
    We present a simple method to decompose the Green forms corresponding to a large class of interesting symmetric Dirichlet forms into integrals over symmetric positive semi-definite and finite range (properly supported) forms that are smoother than the original Green form. This result gives rise to multiscale decompositions of the associated Gaussian free fields into sums of independent smoother Gaussian fields with spatially localized correlations. Our method makes use of the finite propagation speed of the wave equation and Chebyshev polynomials. It improves several existing results and also gives simpler proofs.Comment: minor correction for t<

    Conditional Sampling for Max-Stable Processes with a Mixed Moving Maxima Representation

    Full text link
    This paper deals with the question of conditional sampling and prediction for the class of stationary max-stable processes which allow for a mixed moving maxima representation. We develop an exact procedure for conditional sampling using the Poisson point process structure of such processes. For explicit calculations we restrict ourselves to the one-dimensional case and use a finite number of shape functions satisfying some regularity conditions. For more general shape functions approximation techniques are presented. Our algorithm is applied to the Smith process and the Brown-Resnick process. Finally, we compare our computational results to other approaches. Here, the algorithm for Gaussian processes with transformed marginals turns out to be surprisingly competitive.Comment: 35 pages; version accepted for publication in Extremes. The final publication is available at http://link.springer.co

    Truncated Levy Random Walks and Generalized Cauchy Processes

    Full text link
    A continuous Markovian model for truncated Levy random walks is proposed. It generalizes the approach developed previously by Lubashevsky et al. Phys. Rev. E 79, 011110 (2009); 80, 031148 (2009), Eur. Phys. J. B 78, 207 (2010) allowing for nonlinear friction in wondering particle motion and saturation of the noise intensity depending on the particle velocity. Both the effects have own reason to be considered and individually give rise to truncated Levy random walks as shown in the paper. The nonlinear Langevin equation governing the particle motion was solved numerically using an order 1.5 strong stochastic Runge-Kutta method and the obtained numerical data were employed to calculate the geometric mean of the particle displacement during a certain time interval and to construct its distribution function. It is demonstrated that the time dependence of the geometric mean comprises three fragments following one another as the time scale increases that can be categorized as the ballistic regime, the Levy type regime (superballistic, quasiballistic, or superdiffusive one), and the standard motion of Brownian particles. For the intermediate Levy type part the distribution of the particle displacement is found to be of the generalized Cauchy form with cutoff. Besides, the properties of the random walks at hand are shown to be determined mainly by a certain ratio of the friction coefficient and the noise intensity rather then their characteristics individually.Comment: 7 pages, 3 figure
    corecore