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Abstract

We study optimal conformity measures for various criteria of efficiency
in an idealised setting. This leads to an important class of criteria of
efficiency that we call probabilistic; it turns out that the most standard
criteria of efficiency used in literature on conformal prediction are not
probabilistic.

1 Introduction

Conformal prediction is a method of generating prediction sets that are guaran-
teed to have a prespecified coverage probability; in this sense conformal predic-
tors have guaranteed validity. Different conformal predictors, however, widely
differ in their efficiency, by which we mean the narrowness, in some sense, of
their prediction sets. Empirical investigation of the efficiency of various con-
formal predictors is becoming a popular area of research: see, e.g., [1, 11] (and
the COPA Proceedings, 2012–2015). This paper points out that the standard
criteria of efficiency used in literature have a serious disadvantage, and we de-
fine a class of criteria of efficiency, called “probabilistic”, that do not share this
disadvantage. In two recent papers [3, 5] two probabilistic criteria have been
introduced, and in this paper we introduce two more and argue that probabilis-
tic criteria should be used in place of more standard ones. We concentrate on
the case of classification only (the label space is finite).

Surprisingly few criteria of efficiency have been used in literature, and even
fewer have been studied theoretically. We can speak of the efficiency of individ-
ual predictions or of the overall efficiency of predictions on a test sequence; the
latter is usually (in particular, in this paper) defined by averaging the efficiency
over the individual test examples, and so in this introductory section we only

∗A preliminary version of this paper was published as Working Paper 11 of the On-line
Compression Modelling project (New Series), http://alrw.net, in April 2014.
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discuss the former. This section assumes that the reader knows the basic defini-
tions of the theory of conformal prediction, but they will be given in Section 2,
which can be consulted now.

The two criteria for efficiency of a prediction that have been used most often
in literature (in, e.g., the references given above) are:

• The confidence and credibility of the prediction (see, e.g., [14], p. 96;
introduced in [12]). This criterion does not depend on the choice of a
significance level ε.

• Whether the prediction is a singleton (the ideal case), multiple (an ineffi-
cient prediction), or empty (a superefficient prediction) at a given signifi-
cance level ε. This criterion was introduced in [10], Section 7.2, and used
extensively in [14].

The other two criteria that have been used are the sum of the p-values for all
potential labels (this does not depend on the significance level) and the size of
the prediction set at a given significance level: see the papers [3] and [5].

In this paper we introduce six other criteria of efficiency (Section 2). We
then discuss (in Sections 3–5) the conformity measures that optimise each of the
ten criteria when the data-generating distribution is known; this sheds light on
the kind of behaviour implicitly encouraged by the criteria even in the realistic
case where the data-generating distribution is unknown. As we point out in
Section 5, probabilistic criteria of efficiency are conceptually similar to “proper
scoring rules” in probability forecasting [2, 4], and this is our main motivation
for their detailed study in this paper. After that we briefly illustrate the em-
pirical behaviour of two of the criteria for standard conformal predictors and a
benchmark data set (Section 6).

We only consider the case of randomised (“smoothed”) conformal predictors:
the case of deterministic predictors may lead to packing problems without an
explicit solution (this is the case, e.g., for the N criterion defined below). The
situation here is analogous to the Neyman–Pearson lemma: cf. [7], Section 3.2.

2 Criteria of Efficiency for Conformal Predic-
tors and Transducers

Let X be a measurable space (the object space) and Y be a finite set equipped
with the discrete σ-algebra (the label space); the example space is defined to be
Z := X × Y. A conformity measure is a measurable function A that assigns
to every finite sequence (z1, . . . , zn) ∈ Z∗ of examples a same-length sequence
(α1, . . . , αn) of real numbers and that is equivariant with respect to permuta-
tions: for any n and any permutation π of {1, . . . , n},

(α1, . . . , αn) = A(z1, . . . , zn) =⇒
(
απ(1), . . . , απ(n)

)
= A

(
zπ(1), . . . , zπ(n)

)
.

The conformal predictor determined by A is defined by

Γε(z1, . . . , zl, x) := {y | py > ε} , (1)
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where (z1, . . . , zl) ∈ Z∗ is a training sequence, x is a test object, ε ∈ (0, 1) is a
given significance level, for each y ∈ Y the corresponding p-value py is defined
by

py :=
1

l + 1

∣∣{i = 1, . . . , l + 1 | αyi < αyl+1

}∣∣
+

τ

l + 1

∣∣{i = 1, . . . , l + 1 | αyi = αyl+1

}∣∣ , (2)

τ is a random number distributed uniformly on the interval [0, 1] (even con-
ditionally on all the examples), and the corresponding sequence of conformity
scores is defined by

(αy1 , . . . , α
y
l , α

y
l+1) := A(z1, . . . , zl, (x, y)).

Notice that the system of prediction sets (1) output by a conformal predictor is
decreasing in ε, or nested.

The conformal transducer determined by A outputs the system of p-values
(py | y ∈ Y) defined by (2) for each training sequence (z1, . . . , zl) of examples
and each test object x. (This is just a different representation of the conformal
predictor.)

The standard property of validity for conformal predictors and transducers
is that the p-values py are distributed uniformly on [0, 1] when the examples
z1, . . . , zl, (x, y) are generated independently from the same probability distri-
bution Q on Z (see, e.g., [14], Proposition 2.8). This implies that the probability
of error, y /∈ Γε(z1, . . . , zl, x), is ε at any significance level ε.

Suppose we are given a test sequence (zl+1, . . . , zl+k) and would like to use it
to measure the efficiency of the predictions derived from the training sequence
(z1, . . . , zl). (The efficiency of conformal predictors means that the prediction
sets they output tend to be small, and the efficiency of conformal transducers
means that the p-values that they output tend to be small.) For each test
example zi = (xi, yi), i = l+1, . . . , l+k, we have a nested family (Γεi | ε ∈ (0, 1))
of subsets of Y and a system of p-values (pyi | y ∈ Y). In this paper we will
discuss ten criteria of efficiency for such a family or a system, but some of them
will depend, additionally, on the observed labels yi of the test examples. We
start from the prior criteria, which do not depend on the observed test labels.

2.1 Basic criteria

We will discuss two kinds of criteria: those applicable to the prediction sets Γεi
and so depending on the significance level ε and those applicable to systems of
p-values (pyi | y ∈ Y) and so independent of ε. The simplest criteria of efficiency
are:

• The S criterion (with “S” standing for “sum”) measures efficiency by the
average sum

1

k

l+k∑
i=l+1

∑
y

pyi (3)
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of the p-values; small values are preferable for this criterion. It is ε-free.

• The N criterion uses the average size

1

k

l+k∑
i=l+1

|Γεi |

of the prediction sets (“N” stands for “number”: the size of a prediction
set is the number of labels in it). Small values are preferable. Under this
criterion the efficiency is a function of the significance level ε.

Both these criteria are prior. The S criterion was introduced in [3] and the N
criterion was introduced independently in [5] and [3], although the analogue of
the N criterion for regression (where the size of a prediction set is defined to
be its Lebesgue measure) had been used earlier in [9] (whose arXiv version was
published in 2012).

2.2 Other prior criteria

A disadvantage of the basic criteria is that they look too stringent. Even for
a very efficient conformal transducer, we cannot expect all p-values py to be
small: the p-value corresponding to the true label will not be small with high
probability; and even for a very efficient conformal predictor we cannot expect
the size of its prediction set to be zero: with high probability it will contain
the true label. The other prior criteria are less stringent. The ones that do not
depend on the significance level are:

• The U criterion (with “U” standing for “unconfidence”) uses the average
unconfidence

1

k

l+k∑
i=l+1

min
y

max
y′ 6=y

py
′

i (4)

over the test sequence, where the unconfidence for a test object xi is the

second largest p-value miny maxy′ 6=y p
y′

i ; small values of (4) are preferable.
The U criterion in this form was introduced in [3], but it is equivalent to
using the average confidence (one minus unconfidence), which is very com-
mon. If two conformal transducers have the same average unconfidence
(which is presumably a rare event), the criterion compares the average
credibilities

1

k

l+k∑
i=l+1

max
y

pyi , (5)

where the credibility for a test object xi is the largest p-value maxy p
y
i ;

smaller values of (5) are preferable. (Intuitively, a small credibility is a
warning that the test object is unusual, and since such a warning presents
useful information and the probability of a warning is guaranteed to be
small, we want to be warned as often as possible.)
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• The F criterion uses the average fuzziness

1

k

l+k∑
i=l+1

(∑
y

pyi −max
y

pyi

)
, (6)

where the fuzziness for a test object xi is defined as the sum of all p-
values apart from a largest one, i.e., as

∑
y p

y
i −maxy p

y
i ; smaller values of

(6) are preferable. If two conformal transducers lead to the same average
fuzziness, the criterion compares the average credibilities (5), with smaller
values preferable.

Their counterparts depending on the significance level are:

• The M criterion uses the percentage of objects xi in the test sequence for
which the prediction set Γεi at significance level ε is multiple, i.e., contains
more than one label. Smaller values are preferable. As a formula, the
criterion prefers smaller

1

k

l+k∑
i=l+1

1{|Γεi |>1}, (7)

where 1E denotes the indicator function of the event E (taking value 1 if
E happens and 0 if not). When the percentage (7) of multiple predictions
is the same for two conformal predictors (which is a common situation:
the percentage can well be zero), the M criterion compares the percentages

1

k

l+k∑
i=l+1

1{Γεi=∅} (8)

of empty predictions (larger values are preferable). This is a widely used
criterion. (In particular, it was used in [14] and papers preceding it.)

• The E criterion (where “E” stands for “excess”) uses the average (over
the test sequence, as usual) amount the size of the prediction set exceeds
1. In other words, the criterion gives the average number of excess labels
in the prediction sets as compared with the ideal situation of one-element
prediction sets. Smaller values are preferable for this criterion. As a
formula, the criterion prefers smaller

1

k

l+k∑
i=l+1

(|Γεi | − 1)
+
,

where t+ := max(t, 0). When these averages coincide for two conformal
predictors, we compare the percentages (8) of empty predictions; larger
values are preferable.
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2.3 Observed criteria

The prior criteria discussed in the previous subsection treat the largest p-value,
or prediction sets of size 1, in a special way. The corresponding criteria of this
subsection attempt to achieve the same goal by using the observed label.

These are the observed counterparts of the non-basic prior ε-free criteria:

• The OU (“observed unconfidence”) criterion uses the average observed
unconfidence

1

k

l+k∑
i=l+1

max
y 6=yi

pyi

over the test sequence, where the observed unconfidence for a test example
(xi, yi) is the largest p-value pyi for the false labels y 6= yi. Smaller values
are preferable for this test.

• The OF (“observed fuzziness”) criterion uses the average sum of the p-
values for the false labels, i.e.,

1

k

l+k∑
i=l+1

∑
y 6=yi

pyi ; (9)

smaller values are preferable.

The counterparts of the last group depending on the significance level ε are:

• The OM criterion uses the percentage of observed multiple predictions

1

k

l+k∑
i=l+1

1{Γεi\{yi}6=∅}

in the test sequence, where an observed multiple prediction is defined to
be a prediction set including a false label. Smaller values are preferable.

• The OE criterion (OE standing for “observed excess”) uses the average
number

1

k

l+k∑
i=l+1

|Γεi \ {yi}|

of false labels included in the prediction sets at significance level ε; smaller
values are preferable.

The ten criteria used in this paper are given in Table 1. Half of the criteria
depend on the significance level ε, and the other half are the respective ε-free
versions.

In the case of binary classification problems, |Y| = 2, the number of different
criteria of efficiency in Table 1 reduces to six: the criteria not separated by a
vertical or horizontal line (namely, U and F, OU and OF, M and E, and OM
and OE) coincide.
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Table 1: The ten criteria studied in this paper: the two basic ones in the upper
section; the four other prior ones in the middle section; and the four observed
ones in the lower section

ε-free ε-dependent

S (sum of p-values) N (number of labels)
U (unconfidence) M (multiple)

F (fuzziness) E (excess)
OU (observed unconfidence) OM (observed multiple)

OF (observed fuzziness) OE (observed excess)

3 Optimal Idealised Conformity Measures for a
Known Probability Distribution

Starting from this section we consider the limiting case of infinitely long training
and test sequences (and we will return to the realistic finitary case only in Sec-
tion 6, where we describe our empirical studies). To formalise the intuition of an
infinitely long training sequence, we assume that the prediction algorithm is di-
rectly given the data-generating probability distribution Q on Z instead of being
given a training sequence. Instead of conformity measures we will use idealised
conformity measures: functions A(Q, z) of Q ∈ P(Z) (where P(Z) is the set of
all probability measures on Z) and z ∈ Z. We will fix the data-generating dis-
tribution Q for the rest of the paper, and so write the corresponding conformity
scores as A(z). The idealised conformal predictor corresponding to A outputs
the following prediction set Γε(x) for each object x ∈ X and each significance
level ε ∈ (0, 1). For each potential label y ∈ Y for x define the corresponding
p-value as

py = p(x, y) := Q{z ∈ Z | A(z) < A(x, y)}+ τQ{z ∈ Z | A(z) = A(x, y)} (10)

(it would be more correct to write A((x, y)) and Q({. . .}), but we often omit
pairs of parentheses when there is no danger of ambiguity), where τ is a random
number distributed uniformly on [0, 1]. (The same random number τ is used
in (10) for all (x, y).) The prediction set is

Γε(x) := {y ∈ Y | p(x, y) > ε} . (11)

The idealised conformal transducer corresponding to A outputs for each object
x ∈ X the system of p-values (py | y ∈ Y) defined by (10); in the idealised case
we will usually use the alternative notation p(x, y) for py.

The standard properties of validity for conformal transducers and predictors
mentioned in the previous section simplify in this idealised case as follows:

• If (x, y) is generated from Q, p(x, y) is distributed uniformly on [0, 1].
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• Therefore, at each significance level ε the idealised conformal predictor
makes an error with probability ε.

The test sequence being infinitely long is formalised by replacing the use of a
test sequence in the criteria of efficiency by averaging with respect to the data-
generating probability distribution Q. In the case of the top two and bottom two
criteria in Table 1 (the ones set in italics) this is done as follows. Let us write
ΓεA(x) for the Γε(x) in (11) and pA(x, y) for the p(x, y) in (10) to indicate the
dependence on the choice of the idealised conformity measure A. An idealised
conformity measure A is:

• S-optimal if, for any idealised conformity measure B,

Ex,τ
∑
y∈Y

pA(x, y) ≤ Ex,τ
∑
y∈Y

pB(x, y),

where the notation Ex,τ refers to the expected value when x and τ are
independent, x ∼ QX, and τ ∼ U ; QX is the marginal distribution of Q
on X, and U is the uniform distribution on [0, 1];

• N-optimal if, for any idealised conformity measure B and any significance
level ε,

Ex,τ |ΓεA(x)| ≤ Ex,τ |ΓεB(x)| ;

• OF-optimal if, for any idealised conformity measure B,

E(x,y),τ

∑
y′ 6=y

pA(x, y′) ≤ E(x,y),τ

∑
y′ 6=y

pB(x, y′),

where the lower index (x, y) in E(x,y),τ refers to averaging over (x, y) ∼ Q
(with (x, y) and τ independent);

• OE-optimal if, for any idealised conformity measure B and any significance
level ε,

E(x,y),τ |ΓεA(x) \ {y}| ≤ E(x,y),τ |ΓεB(x) \ {y}| .

We will define the idealised versions of the other six criteria listed in Table 1 in
Section 5.

4 Probabilistic Criteria of Efficiency

Our goal in this section is to characterise the optimal idealised conformity mea-
sures for the four criteria of efficiency that are set in italics in Table 1. We will
assume in the rest of the paper that the set X is finite (from the practical point
of view, this is not a restriction); since we consider the case of classification,
|Y| < ∞, this implies that the whole example space Z is finite. Without loss
of generality, we also assume that the data-generating probability distribution
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Q satisfies QX(x) > 0 for all x ∈ X (we often omit curly braces in expressions
such as QX({x})): we can always omit the xs for which QX(x) = 0.

The conditional probability (CP) idealised conformity measure is

A(x, y) := Q(y | x) :=
Q(x, y)

QX(x)
. (12)

This idealised conformity measure was introduced by an anonymous referee
of the conference version of [3], but its non-idealised analogue in the case of
regression had been used in [9] (following [8] and literature on minimum volume
prediction). We say that an idealised conformity measure A is a refinement of
an idealised conformity measure B if

B(z1) < B(z2) =⇒ A(z1) < A(z2) (13)

for all z1, z2 ∈ Z. Let R(CP) be the set of all refinements of the CP idealised
conformity measure. If C is a criterion of efficiency (one of the ten criteria in
Table 1), we let O(C) stand for the set of all C-optimal idealised conformity
measures.

Theorem 1. O(S) = O(OF) = O(N) = O(OE) = R(CP).

We say that an efficiency criterion is probabilistic if the CP idealised confor-
mity measure is optimal for it. Theorem 1 shows that four of our ten criteria are
probabilistic, namely S, N, OF, and OE (they are set in italics in Table 1). In
the next section we will see that in general the other six criteria are not proba-
bilistic. The intuition behind probabilistic criteria will be briefly discussed also
in the next section.

Proof of Theorem 1. In this proof we partly follow [15], which simplified our
original proof (considering, however, the case of label-conditional idealised con-
formal predictors and transducers).

We start from proving R(CP) = O(N). Let A be any idealised conformity
measure. Fix for a moment a significance level ε. For each example (x, y) ∈ Z,
let P (x, y) be the probability that the idealised conformal predictor based on
A makes an error on the example (x, y) at the significance level ε, i.e., the
probability of y /∈ ΓεA(x). It is clear from (10) and (11) that P takes at most
three possible values (0, 1, and an intermediate value) and that∑

x,y

Q(x, y)P (x, y) = ε (14)

(which just reflects the fact that the probability of error is ε). Vice versa, any
P satisfying these properties will also satisfy

∀(x, y) : P (x, y) = P(x,y),τ (y /∈ ΓεA(x))

for some A. Let us see when we will have A ∈ O(N) (A is an N-optimal idealised
conformity measure). Define Q′ to be the probability measure on Z such that
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Q′X = QX and Q′(y | x) = 1/ |Y| does not depend on y. The N criterion at
significance level ε for A can be evaluated as

Ex,τ |ΓεA(x)| = |Y|

1−
∑
(x,y)

Q′(x, y)P (x, y)

 ;

this expression should be minimised, i.e.,
∑

(x,y)Q
′(x, y)P (x, y) should be max-

imised, under the restriction (14). Let us apply the Neyman–Pearson funda-
mental lemma ([7], Sect. 3.2, Theorem 1) using Q as the null and Q′ as the
alternative hypotheses. We can see that Ex,τ |ΓεA(x)| takes its maximal value if
and only if there exist thresholds k1 = k1(ε), k2 = k2(ε), and k3 = k3(ε) such
that:

• Q{(x, y) | Q(y | x) < k1} < ε ≤ Q{(x, y) | Q(y | x) ≤ k1},

• k2 < k3,

• A(x, y) < k2 if Q(y | x) < k1,

• k2 < A(x, y) < k3 if Q(y | x) = k1,

• A(x, y) > k3 if Q(y | x) > k1.

This will be true for all ε if and only if Q(y | x) is a function of A(x, y) (meaning
that there exists a function F such that, for all (x, y), Q(y | x) = F (A(x, y))).
This completes the proof of R(CP) = O(N).

Next we show that O(N) = O(S). We will use the equality between the
extreme terms of

∑
y∈Y

p(x, y) =
∑
y∈Y

∫ 1

0

1{p(x,y)>ε} dε

=

∫ 1

0

∑
y∈Y

1{p(x,y)>ε} dε =

∫ 1

0

|Γε(x)| dε, (15)

which implies

Ex,τ
∑
y∈Y

p(x, y) =

∫ 1

0

Ex,τ |Γε(x)| dε. (16)

We can see that A ∈ O(S) whenever A ∈ O(N): indeed, any N-optimal idealised
conformity measure minimises the expectation Ex,τ |Γε(x)| on the right-hand
side of (16) for all ε simultaneously, and so minimises the whole right-hand-side,
and so minimises the left-hand-side. On the other hand, A /∈ O(S) whenever
A /∈ O(N): indeed, if an idealised conformity measure fails to minimise the
expectation Ex,τ |Γε(x)| on the right-hand side of (16) for some ε, it fails to
do so for all ε in a non-empty open interval (because of the right-continuity
of Ex,τ |Γε(x)| in ε, which follows from the Lebesgue dominated convergence
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theorem and the right-continuity of |Γε(x)| = |Γε(x, τ)| in ε for a fixed τ),
and therefore, it does not minimise the right-hand side of (16) (any N-optimal
idealised conformity measure, such as the CP idealised conformity measure, will
give a smaller value), and therefore, it does not minimise the left-hand side
of (16).

The equality O(S) = O(OF) follows from

Ex,τ
∑
y

p(x, y) = E(x,y),τ

∑
y′ 6=y

p(x, y′) +
1

2
,

where we have used the fact that p(x, y) is distributed uniformly on [0, 1] when
((x, y), τ) ∼ Q× U (see [14]).

Finally, we notice that O(N) = O(OE). Indeed, for any significance level ε,

Ex,τ |Γε(x)| = E(x,y),τ |Γε(x) \ {y}|+ (1− ε),

again using the fact that p(x, y) is distributed uniformly on [0, 1] and so
P(x,y),τ (y ∈ Γε(x)) = 1− ε.

Remark. The statement O(S) = R(CP) of Theorem 1 can be generalised to
the criterion Sφ preferring small values of

1

k

l+k∑
i=l+1

∑
y

φ(pyi )

(instead of (3)), where φ : [0, 1] → R is a fixed continuously differentiable
strictly increasing function, not necessarily the identity function. Namely, we
still have O(Sφ) = R(CP). Indeed, we can assume, without loss of generality,
that φ(0) = 0 and φ(1) = 1 and replace (15) by

∑
y∈Y

φ(p(x, y)) =
∑
y∈Y

∫ 1

0

1{φ(p(x,y))>ε} dε =

∫ 1

0

∑
y∈Y

1{p(x,y)>φ−1(ε)} dε

=

∫ 1

0

∣∣∣Γφ−1(ε)(x)
∣∣∣ dε =

∫ 1

0

∣∣∣Γε′(x)
∣∣∣φ′(ε′) dε′,

where φ′ is the (continuous) derivative of φ, and then use the same argument
as before.

5 Criteria of Efficiency that are not Probabilis-
tic

Now we define the idealised analogues of the six criteria that are not set in
italics in Table 1. An idealised conformity measure A is:
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• U-optimal if, for any idealised conformity measure B, we have either

Ex,τ min
y

max
y′ 6=y

pA(x, y′) < Ex,τ min
y

max
y′ 6=y

pB(x, y′)

or both
Ex,τ min

y
max
y′ 6=y

pA(x, y′) = Ex,τ min
y

max
y′ 6=y

pB(x, y′)

and
Ex,τ max

y
pA(x, y) ≤ Ex,τ max

y
pB(x, y);

• M-optimal if, for any idealised conformity measure B and any significance
level ε, we have either

Px,τ (|ΓεA(x)| > 1) < Px,τ (|ΓεB(x)| > 1)

or both
Px,τ (|ΓεA(x)| > 1) = Px,τ (|ΓεB(x)| > 1)

and
Px,τ (|ΓεA(x)| = 0) ≥ Px,τ (|ΓεB(x)| = 0);

• F-optimal if, for any idealised conformity measure B, we have either

Ex,τ
(∑

y

pA(x, y)−max
y

pA(x, y)
)
< Ex,τ

(∑
y

pB(x, y)−max
y

pB(x, y)
)

or both

Ex,τ
(∑

y

pA(x, y)−max
y

pA(x, y)
)

= Ex,τ
(∑

y

pB(x, y)−max
y

pB(x, y)
)

and
Ex,τ max

y
pA(x, y) ≤ Ex,τ max

y
pB(x, y);

• E-optimal if, for any idealised conformity measure B and any significance
level ε, we have either

Ex,τ
(
(|ΓεA(x)| − 1)

+)
< Ex,τ

(
(|ΓεB(x)| − 1)

+)
or both

Ex,τ
(
(|ΓεA(x)| − 1)

+)
= Ex,τ

(
(|ΓεB(x)| − 1)

+)
and

Px,τ (|ΓεA(x)| = 0) ≥ Px,τ (|ΓεB(x)| = 0);

• OU-optimal if, for any idealised conformity measure B,

E(x,y),τ max
y′ 6=y

pA(x, y′) ≤ E(x,y),τ max
y′ 6=y

pB(x, y′);
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• OM-optimal if, for any idealised conformity measure B and any signifi-
cance level ε,

P(x,y),τ (ΓεA(x) \ {y} 6= ∅) ≤ P(x,y),τ (ΓεB(x) \ {y} 6= ∅).

In the following three definitions we follow [14], Chapter 3. The predictability
of x ∈ X is

f(x) := max
y∈Y

Q(y | x).

A choice function ŷ : X→ Y is defined by the condition

∀x ∈ X : f(x) = Q(ŷ(x) | x).

Define the signed predictability idealised conformity measure corresponding to ŷ
by

A(x, y) :=

{
f(x) if y = ŷ(x)

−f(x) if not;

a signed predictability (SP) idealised conformity measure is the signed pre-
dictability idealised conformity measure corresponding to some choice function.

For the following two theorems we will need to modify the notion of refine-
ment. Let R′(SP) be the set of all idealised conformity measures A such that
there exists an SP idealised conformity measure B that satisfies both (13) and

B(x, y1) = B(x, y2) =⇒ A(x, y1) = A(x, y2)

for all x ∈ X and y1, y2 ∈ Y.

Theorem 2. O(U) = O(M) = R′(SP).

We omit the proofs of Theorems 2–4 in this version of the paper.
Define the MCP (modified conditional probability) idealised conformity mea-

sure corresponding to a choice function ŷ by

A(x, y) :=

{
Q(y | x) if y = ŷ(x)

Q(y | x)− 1 if not;

an MCP idealised conformity measure is an idealised conformity measure cor-
responding to some choice function; R′(MCP) is defined analogously to R′(SP)
but using MCP rather than SP idealised conformity measures.

Theorem 3. O(F) = O(E) = R′(MCP).

The modified signed predictability idealised conformity measure is defined by

A(x, y) :=


f(x) if f(x) > 1/2 and y = ŷ(x)

0 if f(x) ≤ 1/2

−f(x) if f(x) > 1/2 and y 6= ŷ(x),

13



Figure 1: Examples of hand-written digits in the USPS data set.

where f is the predictability function; notice that this definition is unaffected by
the choice of the choice function. Somewhat informally and assuming |Y| > 2
(we are in the situation of Theorem 1 when |Y| = 2), we define a set R′′(MSP)
in the same way as R′(MSP) (analogously to R′(SP)) except that for A ∈
R′′(MSP), f(x) = 1/2, and y 6= ŷ(x) we allow A(x, y) < A(x, ŷ(x)).

Theorem 4. If |Y| > 2, O(OU) = O(OM) = R′′(MSP).

Theorems 2–4 show that the six criteria that are not set in italics in Table 1
are not probabilistic (except for OU and OM when |Y| = 2, of course). Criteria
of efficiency that are not probabilistic are somewhat analogous to “improper
scoring rules” in probability forecasting (see, e.g., [2] and [4]). The optimal
idealised conformity measures for the criteria of efficiency given in this paper
that are not probabilistic have clear disadvantages, such as:

• They depend on the arbitrary choice of a choice function. In many cases
there is a unique choice function, but the possibility of non-uniqueness is
still awkward.

• They encourage “strategic behaviour” (such as ignoring the differences,
which may be very substantial, between potential labels other than ŷ(x)
for a test object x when using the M criterion).

However, we do not use the terminology “proper/improper” in the case of cri-
teria of efficiency for conformal prediction since it is conceivable that some
non-probabilistic criteria of efficiency may turn out to be useful.

6 Empirical Study

In this section we demonstrate differences between two of our ε-free criteria, OF
(probabilistic) and U (standard but not probabilistic) on the USPS data set of
hand-written digits ([6]; examples of such digits are given in Figure 1, which is
a subset of Figure 2 in [6]). We use the original split of the data set into the
training and test sets. Our programs are written in R, and the results presented
in the figures below are for the seed 0 of the R random number generator;
however, we observe similar results in experiments with other seeds.

The problem is to classify hand-written digits, the labels are elements of
{0, . . . , 9}, and the objects are elements of R256, where the 256 numbers repre-
sent the brightness of pixels in 16 × 16 pictures. We normalise each object by

14



applying the same affine transformation (depending on the object) to each of
its pixels making the mean brightness of the pixels in the picture equal to 0 and
making its standard deviation equal to 1. The sizes of the training and test sets
are 7291 and 2007, respectively.

We evaluate six conformal predictors using the two criteria of efficiency. Fix
a metric on the object space R256; in our experiments we use tangent distance
(as implemented by Daniel Keysers) and Euclidean distance. Given a sequence
of examples (z1, . . . , zn), zi = (xi, yi), we consider the following three ways of
computing conformity scores: for i = 1, . . . , n,

• αi :=
∑K
j=1 d

6=
j /
∑K
j=1 d

=
j , where d6=j are the distances, sorted in the in-

creasing order, from xi to the objects in (z1, . . . , zn) with labels different

from yi (so that d6=1 is the smallest distance from xi to an object xj with
yj 6= yi), and d=

j are the distances, sorted in the increasing order, from
xi to the objects in (z1, . . . , zi−1, zi+1, . . . , zn) labelled as yi (so that d=

1 is
the smallest distance from xi to an object xj with j 6= i and yj = yi). We
refer to this conformity measure as the KNN-ratio conformity measure; it
has one parameter, K, whose range is {1, . . . , 50} in our experiments (so
that we always have K � n).

• αi := Ni/K, where Ni is the number of objects labelled as yi among
the K nearest neighbours of xi (when dK = dK+1 in the ordered list
d1, . . . , dn−1 of the distances from xi to the other objects, we choose the
nearest neighbours randomly among zj with yj = yi and with xj at a
distance of dK from xi). This conformity measure is a KNN counterpart
of the CP idealised conformity measure (cf. (12)), and we will refer to
it as the KNN-CP conformity measure; its parameter K is in the range
{2, . . . , 50} in our experiments.

• finally, we define fi := maxy(Ny
i /K), where Ny

i is the number of objects
labelled as y among the K nearest neighbours of xi, ŷi ∈ arg maxy(Ny

i /K)
(chosen randomly from arg maxy(Ny

i /K) if |arg maxy(Ny
i /K)| > 1), and

αi :=

{
fi if yi = ŷi

−fi otherwise;

this is the KNN-SP conformity measure.

The three kinds of conformity measures combined with the two metrics (tangent
and Euclidean) give six conformal predictors.

Figure 2 gives the average unconfidence (4) (top panel) and the average
observed fuzziness (9) (bottom panel) over the test sequence (so that k = 2007)
for a range of the values of the parameter K. Each of the six lines corresponds
to one of the conformal predictors, as shown in the legends; in black-and-white
the lines of the same type (dotted, solid, or dashed) corresponding to Euclidean
and tangent distances can always be distinguished by their position: the former
is above the latter.
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The best results are for the KNN-ratio conformity measure combined with
tangent distance for small values of the parameter K. For the two other types
of conformity measures their relative evaluation changes depending on the kind
of a criterion used to measure efficiency: as expected, the KNN-CP conformal
predictors are better under the OF criterion, whereas the KNN-SP conformal
predictors are better under the U criterion (cf. Theorems 1 and 2), if we ignore
small values of K (when the probability estimates Ny

i /K are very unreliable).

7 Conclusion

This paper investigates properties of various criteria of efficiency of conformal
prediction in the case of classification. It would be interesting to transfer, to
the extent possible, this paper’s results to the cases of:

Regression. The sum of p-values (as used in the S criterion) now becomes the
integral under the p-value as function of the label y of the text example,
and the size of a prediction set becomes its Lebesgue measure (consid-
ered, as already mentioned, in [9] in the non-idealised case). Whereas
the latter is typically finite, ensuring the convergence of the former is less
straightforward.

Anomaly detection. A first step in this direction is made in [13], which con-
siders the average p-value as its criterion of efficiency.

Other natural directions of further research include:

• Extensions of our results to infinite, including non-discrete, X.

• Extensions to Mondrian conformal predictors. In the case of label-
conditional conformal predictors and probabilistic criteria, this was started
in [15].

• Extensions to non-idealised conformal predictors.
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Figure 2: Top plot: average unconfidence for the USPS data set (for different
values of parameters). Bottom plot: average observed fuzziness for the USPS
data set. In black-and-white the lines of the same type (dotted, solid, or dashed)
corresponding to Euclidean and tangent distances can always be distinguished
by their position: the former is above the latter.
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