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Abstract 

Of the various renewable energy resources, wind power is widely recognized as one of 

the most promising. The management of wind farms and electricity systems can benefit 

greatly from the availability of estimates of the probability distribution of wind power 

generation. However, most research has focused on point forecasting of wind power. In 

this paper, we develop an approach to producing density forecasts for the wind power 

generated at individual wind farms. Our interest is in intraday data and prediction from 1 

to 72 hours ahead. We model wind power in terms of wind speed and wind direction. In 

this framework, there are two key uncertainties. First, there is the inherent uncertainty in 

wind speed and direction, and we model this using a bivariate VARMA-GARCH (vector 

autoregressive moving average-generalized autoregressive conditional heteroscedastic) 

model, with a Student t distribution, in the Cartesian space of wind speed and direction. 

Second, there is the stochastic nature of the relationship of wind power to wind speed 

(described by the power curve), and to wind direction. We model this using conditional 

kernel density (CKD) estimation, which enables a nonparametric modeling of the 

conditional density of wind power. Using Monte Carlo simulation of the VARMA-

GARCH model and CKD estimation, density forecasts of wind speed and direction are 

converted to wind power density forecasts. Our work is novel in several respects: 

previous wind power studies have not modeled a stochastic power curve; to 

accommodate time evolution in the power curve, we incorporate a time decay factor 

within the CKD method; and the CKD method is conditional on a density, rather than a 

single value. The new approach is evaluated using datasets from four Greek wind farms. 

 

Key words: Wind energy; Predictive distribution; Kernel estimation; Wind speed; Wind 

direction; Bivariate GARCH. 



1 

1. INTRODUCTION 

Wind power is the fastest growing form of renewable energy. Efficient 

management of wind farms and electricity systems requires forecasts of the power 

generated. This is a challenging forecasting task due to the erratic nature of wind and the 

nonlinear relationship between the variables involved. In an effort to enhance the 

information provided by the forecasters, probabilistic forecasting has been a recent area 

of development in wind energy forecasting (Bremnes 2004; Pinson and Kariniotakis 

2010). The extension from deterministic forecasting to probabilistic allows more efficient 

management of the transmission system through improved load dispatch and better 

scheduling of spinning reserve. For a wind farm operator, a probabilistic forecast enables 

improved decision making regarding the amount of energy to commit to the electricity 

grid for a future period, which is important given the financial penalties that are incurred 

for the shortfall. Ultimately, a probabilistic assessment of the uncertainty in wind energy 

generation will bring societal benefits by enabling more efficient energy management 

resulting in a reduced reliance on power generation from fossil fuels. 

Although there has been substantial attention paid by researchers to methods for 

wind power point forecasting, methods for wind power density forecasting are far less 

developed. One approach to density forecasting would be to fit a univariate statistical 

model to the wind power time series, but this is not straightforward due to the inherent 

nonlinear evolution of wind power. The alternative is to convert wind speed density 

forecasts to wind power density forecasts using the power curve, which relates wind 

power to wind speed. This approach is the focus of this paper. It relies on the availability 

of wind speed density forecasts, and these can be derived from a time series model or 

from ensemble predictions produced by an atmospheric model (see, for example, 



2 

Gneiting et al. 2006; Taylor et al. 2009; Sloughter et al. 2010; Gneiting 2011a). As for the 

power curve, historical data indicates that there is substantial variability in the 

relationship between wind speed and wind power (S nchez 2006). It would seem wise to 

take this additional uncertainty into consideration when converting wind speed density 

forecasts to wind power density predictions. 

This paper is the first to produce wind power density forecasts by explicitly 

modeling both the wind speed uncertainty and the stochastic power curve. With our focus 

on hourly data and relatively short forecast lead times, we use a time series model for 

wind speed density forecasting, rather than ensemble predictions from an atmospheric 

model. Advantages of using time series models are: (i) they are no less accurate than 

atmospheric modeling for short-term predictions (Focken et al. 2002); (ii) they can 

produce forecasts from any time origin and for any lead time, which contrasts with 

atmospheric model ensemble predictions (see, for example, Taylor et al., 2009); (iii) 

acquiring forecasts from an atmospheric model can be costly; and (iv) predictions from 

such models are often not available for the wind farm location of interest. Following the 

work of Cripps and Dunsmuir (2003) and Hering and Genton (2010), we use a bivariate 

VARMA-GARCH (vector autoregressive moving average-generalized autoregressive 

conditional heteroscedastic) time series model, which enhances wind speed prediction 

through the joint modeling of wind speed and direction. We convert the resulting wind 

speed density predictions into wind power density forecasts using Monte Carlo 

simulation and conditional kernel density (CKD) estimation (see Rosenblatt 1969; 

Hyndman et al. 1996), which enables a nonparametric modeling of the conditional 

density of wind power. The method involves kernel weighting over the conditioning 

variable, wind speed, and kernel density estimation for the target variable, wind power. 
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Our use of CKD estimation has two novel features: (i) the CKD estimation is conditional 

on a density, rather than a single value, and (ii) to model time evolution in the 

relationship between wind power and the conditioning variables, we incorporate a time 

decay factor within CKD estimation.  

To illustrate implementation of our approach, and to compare it to alternatives, we 

use data from four Greek wind farms, and evaluate forecast accuracy from 1 to 72 hours 

ahead. Due to the intermittency and non-dispatchable nature of wind energy, accurate 

short-term wind power forecasts from 15 minutes up to several days ahead are vital to 

transmission system operators, who maintain the balance between load and generation. 

For wind farm operators, the accuracy of short-term wind power forecasts is crucial for 

minimizing the penalties for failing to meet the commitment. Very short-term forecast 

horizons from a few seconds to an hour are related to turbine active control in wind farms. 

Long-term horizons up to 7 days are useful for maintenance planning of wind turbines. 

Section 2 presents the Greek wind power dataset. Section 3 describes the 

VARMA-GARCH model that we use to produce wind speed and direction density 

forecasts. Section 4 explores the stochastic nature of the relationship between these two 

variables and wind power. Section 5 introduces CKD estimation, and Section 6 describes 

our use of CKD estimation for wind power density forecasting. Section 7 presents 

empirical results, and Section 8 provides a brief summary and conclusion.  

2. THE WIND DATA 

For the empirical work in this paper, we used hourly data from four wind farms in 

Crete: Aeolos, Rokas, Enteka and Iweco. Crete is the largest island in the Aegean Sea. It 

has high wind energy potential and an autonomous electricity grid. The datasets from 
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Aeolos, Enteka and Rokas, which are in the east of Crete, consist of data from January 1, 

2006 to December 31, 2006, which amounts to 8,760 hourly observations. The data from 

Iweco wind farm, which is located in the center of Crete, is over a shorter period from 

January 1, 2006 to October 30, 2006, which amounts to 7,272 observations. The wind 

speed, direction and power data were provided rounded to the nearest 0.1 m/s, 0.1° and 

0.1 MW, respectively. For each wind farm, the wind speed and direction were recorded at 

a meteorological tower near to the wind farm at the hub height of the wind farm‟s 

turbines. The wind power data corresponds to total power generated from the whole wind 

farm. The capacities of the Aeolos, Enteka, Iweco and Rokas wind farms, at the end of 

2006, were 11.6 MW, 2.8 MW, and 4.3 MW and 16.3 MW, respectively. In our empirical 

forecasting comparison of Section 7, the last 25% of each wind power series is used as 

the post-sample period. Figure 1 shows the time series plots for wind speed, direction and 

power for the Aeolos wind farm. All three series exhibit substantial variability. The wind 

power series is bounded above by the capacity of the wind farm. Interestingly, the wind 

power plot seems to indicate shifts in the capacity during January and February, and in 

the first half of July. The rise in the capacity around the end of February was due to new 

turbine installations, but we do not have explanations for the other apparent capacity 

changes. In Sections 3 and 4, we provide further descriptive plots to gain insight into the 

three wind variables and the relationships between them.  

3. BIVARIATE VARMA-GARCH MODEL FOR WIND SPEED AND DIRECTION 

In fitting a statistical model to wind speed time series, it has been suggested that 

wind direction can enhance the model, and hence improve wind speed forecast accuracy. 

Observing that wind direction is related to the fluctuations of sea breeze in Sydney 
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Harbor, Cripps and Dunsmuir (2003) transform the minute-by-minute time series of wind 

speed and direction to Cartesian coordinates, and model the pair of wind velocity 

variables using a bivariate vector autoregressive moving average (VARMA) model with 

error variances described by a bivariate generalized autoregressive conditional 

heteroskedastic (GARCH) process and a Student t distribution for the error terms. 

Gneiting et al. (2006) identify two distinct forecast regimes, split by wind direction, in 

hourly time series of wind speed and direction in the U.S. Pacific Northwest. They 

propose spatial and temporal regime switching models using a vector autoregressive idea 

and a truncated Gaussian distribution for two-hour ahead prediction. For the same data, 

Hering and Genton (2010) consider a univariate wind speed model incorporating wind 

direction in trigonometric forms using the truncated Gaussian distribution, and also a 

bivariate model for wind speed and direction, in Cartesian coordinate form, using a 

skewed t distribution. 

A major benefit of modeling wind speed and wind direction, after transformation 

to Cartesian coordinates, is that non-negativity of wind speed prediction is automatically 

ensured. The two axes of the coordinates represent wind velocities corresponding to the 

east-west and north-south wind components. In this paper, we use a bivariate model for Zt 

= (Ut,Vt), where Ut = Xt sin(t+), Vt = Xt cos(t+), Xt is the wind speed at time t, t is 

the wind direction at time t, and  is a constant parameter that is estimated along with the 

model parameters using maximum likelihood. Our inclusion of the parameter  is new. It 

is intended to rotate the coordinate axes, so that one of them is aligned with a commonly 

occurring wind direction. This reduces the covariance between Ut and Vt, which should 

simplify the bivariate modeling. For the Aeolos wind farm, we plot the angular histogram 

of wind direction on the left hand side of Figure 2, and wind speed and direction on the 
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right hand side of the figure. The plots indicate that, for this particular wind farm, wind 

blows more frequently at approximately 20° (north-easterly) and 250° (south-westerly). 

In the model that we use for Aeolos in our empirical analysis of Section 7, the optimized 

value of the parameter  was estimated as 30.1°. This implies that the axes are rotated 

anticlockwise by 30.1°, which results in the Ut axis approximately aligning with the 

commonly occurring Aeolos south-westerly wind direction. 

We use a similar model to that presented by Cripps and Dunsmuir (2003). Using 

the VEC form of the bivariate GARCH model of Bollerslev et al. (1988), we estimated 

the entire covariance matrix of VEC, rather than the diagonal covariance matrix assumed 

by Cripps and Dunsmuir (2003). The model is given in expressions (1)-(4). Expression 

(1) is the VARMA part of the model and expression (3) is the bivariate GARCH part. 
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where Zt is the (2×1) vector of wind velocities; t is a vector of error terms; Ht is the 

conditional covariance matrix of t; ηt is an i.i.d. vector of error terms; vech(·) denotes the 

column stacking operator of the lower triangular part of the symmetric matrix that is its 

argument; Ai and Bj are (2×2) matrices of parameters;Di and Gj are (3×3) matrices of 

parameters; m, r, q and p are non-negative integer valued constants that indicate the order 

of the VARMA and GARCH models; ),( tμs  is a (2×1) vector of deterministic intraday 
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seasonal terms with (2×1) constant parameter vectors iμ ; ),( tωs  is a (3×1) vector of 

deterministic intraday seasonal terms with (3× 1) constant parameter vectors iω ; N  is a 

non-negative integer indicating the number of terms in the summation of ),( tγs ; and h(t) 

is a repeating step function that numbers the hours from 1 to 24 within each day. 

We used the Schwarz‟s Bayesian Criterion to select the order of the VARMA and 

GARCH components of the model, and the rN . We considered VARMA and GARCH 

lags up to order 24, and 8rN . For our data, we implemented the VARMA-GARCH 

model using multivariate Gaussian, Student t and skewed t (Azzalini and Genton 2008) 

distributions for t. Table 1 summarizes the three models fitted to the Aeolos wind farm 

data. The axes-rotation  parameter is significant for each of the three models. The table 

shows that the values of the degrees of freedom were low for the models with Student t 

and skewed t distributions, suggesting that the distribution is not close to Gaussian. In the 

table, the orders of the models are reasonably low, especially for the two non-Gaussian 

distributions, and it is interesting to see that diurnal seasonality only features in the 

Gaussian model. We investigated stationarity by considering, for the ARMA part of the 

model, the eigenvalues of the sum of the Ai and Bj matrices, and for the GARCH part, the 

eigenvalues of the sum of the Di and Gj matrices (see Fountis and Dickey 1989; Bauwens 

et al. 2006). These eigenvalues are shown in the bottom rows of Table 1. Stationarity is 

indicated by the eigenvalues being less than one in modulus. The values for the GARCH 

part suggest that the model has persistence in its modeling of volatility. When assessed 

across all four wind farms, the Student t distribution led to the most accurate wind speed 

density forecasts, and so we use this in the empirical analysis in the rest of this paper.  
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Recent research has considered how bootstrap procedures can be used to include 

parameter uncertainty in density forecasts generated from GARCH models (Reeves 2005; 

Pascual et al. 2006). However, such procedures are highly computational as they require 

repeated maximum likelihood estimation. Chen et al. (2011) suggest approximating a 

GARCH model as a linear process written in terms of squared residuals, which can then 

be estimated using least squares. This idea is not readily applicable to the multivariate 

GARCH model in this paper. In addition, bootstrapping such a model would seem to be 

computationally challenging. In view of this, in producing density forecasts from our 

VARMA-GARCH model, we did not account for the parameter estimation uncertainty. 

However, this is an aspect of our analysis that could be developed in future work.  

4. THE POWER CURVE 

Our proposed methodology for wind power density forecasting requires an 

understanding of the relationship between wind power and wind speed, which is 

described by the power curve. Although wind power theoretically depends on wind speed, 

air density and the area swept by the turbine blades, turbine manufacturers typically 

provide information regarding the power curve for an individual wind turbine assuming 

fixed air density. A power curve has a „cut-in speed‟, at which the turbine blades begin to 

rotate; a „rated speed‟, which is the lowest speed at which the maximum power output of 

the turbine is generated; and a „cut-out speed‟, beyond which the turbine is shut down to 

prevent damage. An idealized deterministic curve, of this form, is used in the work of 

Taylor et al. (2009), Hering and Genton (2010) and Gneiting (2011a). However, as these 

authors acknowledge, in practice, the power curve is not deterministic. 
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  nche  (2006) explains that, in reality, the form of the power curve depends on 

meteorological variables such as wind direction, temperature, local air density and 

precipitation. He notes that the behavior of power curves when the wind speed increases 

can be different from the behavior when the speed decreases. Furthermore, the task is to 

predict wind power for an entire wind farm, and for this, the power curve of the whole 

wind farm is needed. The choice of a deterministic power curve is then complicated by 

the fact that the wind turbines in a wind farm can have different cut-in, rated and cut-out 

speeds, and that there may be changes in the power capacity of the wind farm due to the 

addition of new turbines and turbine maintenance. Also, apparent changes in the capacity 

can be due to down-ramping to reduce the amount of wind energy entering the utility 

system. Given the complexity of the power curve, in practice, a deterministic power 

curve is often derived from historical wind speed and power data recorded at the wind 

farm level.  

In Figure 3, we plot the historical wind power and wind speed data for two of the 

Greek wind farms. The typical features of a power curve are evident, along with 

substantial variability. In this paper, our approach to wind power density forecasting aims 

to capture the stochastic nature of the power curve. In Figure 4, we again plot wind power 

against wind speed, but, in this plot, we use different symbols to show the data points for 

selected months. The figure seems to show the wind farms' capacities changing over time. 

As noted in Section 2, the capacity of the Aeolos wind farm increased around the end of 

February 2006 due to the installation of new turbines. However, we do not have 

explanations for the other apparent capacity changes. Unfortunately, information 

regarding idiosyncrasies in a wind power time series may well not be available to the 
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forecaster. Therefore, our approach to wind power density forecasting should try to 

accommodate the potentially time-varying nature of the power curve.  

Although wind turbines are able to turn to face the wind, it has been suggested 

that the relationship between wind power and wind speed is, to some extent, dependent 

on the wind direction. Potter et al. (2007) find that the uncertainty in the relationship 

depends on the wind direction. Nielsen et al. (2006) include a wind direction variable into 

the relationship to explain turbine wake effects and direction dependent bias of the 

meteorological forecasts.   nche  (2006) recognizes that wind direction influences the 

performance of a wind farm, and so uses it in a wind power prediction model. In Figure 5, 

we plot wind power against wind speed using different symbols to show the data points 

for selected wind directions. The plots suggest that the variability in the relationship can 

depend on wind direction. For Aeolos, south-westerly wind seems to produce a higher 

degree of variability in the relationship, and for Rokas, south-westerly wind shows higher 

variability than north-westerly when the wind speed is below about 13 m/s. 

As mentioned in Section 3 for the Aeolos wind farm, wind blows more frequently 

around 20° and 250°. The plot on the right hand side of Figure 2 indicates that, in these 

directions, the level and variability of the wind speed is lower than from other directions. 

This might be due to the inherent characteristics of the wind, or to the terrain surrounding 

the wind farm. We investigate the influence of wind direction on the relationship of wind 

speed and power by plotting power against both speed and direction on the left hand side 

of Figure 6. A smooth surface, fitted by the Nadaraya-Watson estimator (see Nadaraya 

1964; Watson 1964), is shown on the right hand side of the figure. The surface indicates 

that, for speed above about 20 m/s, the wind blowing around 30, 80 and 240 tends to 

generate power more persistently. In summary, Figures 5 and 6 suggest that wind power, 
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its relationship to wind speed, and wind speed itself are dependent, to some extent, on 

wind direction. This supports our joint modeling of wind speed and direction in Section 3, 

and motivates the inclusion of wind direction in our modeling of wind power.  

The conversion of a wind speed density forecast into a wind power density 

forecast is a conditional density estimation problem. If the conditional wind power 

density were to follow a Gaussian distribution with a constant variance and a mean that is 

a linear function of explanatory variables, it would be a standard multiple regression 

problem. However, the relationship between wind power and wind speed is nonlinear, 

and the conditional density of wind power is often skewed and can be bimodal, and, 

importantly, its shape is conditional on the value of the wind speed. This dependence on 

wind speed is illustrated by Figure 7, which shows smoothed histograms of wind power 

for different values of wind speed. In this paper, we use conditional kernel density 

estimation to overcome the issues of nonlinearity and a non-Gaussian conditional density. 

5. CKD ESTIMATION 

Conditional kernel density (CKD) estimation enables density estimation of a 

variable conditional on the value of one or more explanatory variables. The method is 

nonparametric in two senses; it involves no parametric assumption for the density of the 

target variable, and it makes no parametric assumption regarding the form of the 

relationship between target and explanatory variables. This is enabled through the use of 

double kernel estimation. Since the method involves no distributional assumption, the 

conditional kernel density estimation is particularly advantageous in estimating the 

density when the conditional distribution is multimodal or skewed, as is often the case in 

non-linear or non-Gaussian situations. In view of the nonlinear and stochastic 
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dependency of wind power on wind speed, CKD would seem to be very suitable for 

estimating wind power densities conditional on values for wind speed.  

We define Yt as dependent variable and Xt as explanatory variable. Let  xyf |  be 

the conditional density function of Yt given Xt = x. The Rosenblatt CKD estimator 

(Rosenblatt 1969) of )|( xyf  is written as 
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where n is the sample size, and Kh(·)=K(·/h)/h is a kernel function with bandwidth h. This 

formulation contains two bandwidths, hx and hy. They are scale parameters that control 

the amount of smoothing. We discuss our approach to bandwidth optimization in Section 

6. An estimate of the full density function can be built up by repeating the CKD 

estimation for a range of y values. The CKD estimator involves double kernel estimation, 

with kernel density estimation in the y direction and kernel smoothing in the x direction. 

For a given x, the density function of Yt at the value y is constructed by applying kernel 

density estimation to the sample of values of Yt, with each Yt value weighted in 

accordance with the proximity of the corresponding Xt relative to the value x.  

Hyndman et al. (1996) note that the mean of the Rosenblatt estimator is a biased 

estimator of the conditional mean. To address this, they propose a two-step CKD 

estimator. In the first step, the conditional mean is estimated using some form of unbiased 

kernel smoothing. Subtracting the resulting mean estimates from the observed values for 

Yt delivers a set of residuals et. In the second step, the Rosenblatt CKD estimator is 

applied to these residuals. The Hyndman et al. two-step CKD estimator is given in 

expressions (6) and (7), where )(ˆ
t

Xm  is the unbiased conditional mean estimator. 
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where   )(ˆˆ
ttt XmYe   and )(ˆ xmye                    (7) 

 This formulation contains the bandwidths, hx and he, and possibly additional 

bandwidths associated with the estimation of the conditional mean. As with the 

Rosenblatt CKD estimator, an estimate of the full density function can be produced by 

repeating the Hyndman et al. CKD estimation for different values of y. 

There are not many examples of the use of CKD estimation in a time series 

context. Hyndman et al. use their density estimator for daily temperature conditional on 

lagged temperature and a seasonal variable. Bashtannyk and Hyndman (2001) use the 

estimator for the density of the eruption duration of the Old Faithful geyser conditional 

on waiting time. Fan and Yim (2004) extend the Rosenblatt estimator using a local linear 

regression, and forecast the density of the yield change of treasury bills conditional on the 

current yield. Juban et al. (2007) use the Rosenblatt CKD estimator to predict wind power 

densities conditional on the most recent wind power observation and point forecasts of 

wind speed and direction produced by an atmospheric model. Our use of CKD differs 

from this in that we produce wind power density forecasts conditional on density 

forecasts of wind speed and direction. 

6. A NEW APPROACH TO CKD ESTIMATION FOR WIND POWER MODELING 

6.1. CKD Estimation Conditional on Wind Speed 

For wind power density forecasting, we implemented the two-step CKD estimator 

of Hyndman et al. (1996), in expressions (6)-(7), with Yt and Xt specified as wind power 
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and speed, respectively. We considered the Loess mean estimator of Cleveland (1979) 

and the Nadaraya-Watson mean estimator. However, the two-step CKD estimator led to 

wind power density forecasts that were only slightly more accurate than those produced 

by the Rosenblatt CKD estimator of expression (5). In view of this, we felt we could not 

justify the use of the more complex two-step estimator, and so, in this section, we report 

the results for the simpler Rosenblatt CKD estimator.  

In our work, the full wind power density function was constructed by repeating 

the CKD estimation for values of y from  ero to the wind farm‟s capacity with increments 

equal to 1% of the capacity. Linear interpolation between the resulting values of the 

density function delivered an estimate of the complete wind power density. Using a finer 

increment than 1% of the capacity led to increased computational burden with very little 

improvement in density forecast accuracy. We used a Gaussian kernel. We also tested a 

truncated Gaussian kernel, since the wind power is a bounded variable, but we found no 

practical benefit, which is consistent with the comments of Hyndman and Yao (2002). 

The CKD estimator enables the density function of wind power to be estimated 

for a given value of the explanatory variable, wind speed. However, for any future period, 

the value of wind speed is of course unknown. Indeed, the purpose of the VARMA-

GARCH model of Section 3 is to produce wind speed density forecasts. We are not aware 

of any previous studies that have considered the application of the CKD estimator when 

the explanatory variable is stochastic. In this paper, we introduce a CKD-based approach 

to estimating the wind power density conditional on a density for the explanatory variable, 

wind speed. The approach involves the following three stages: 

(1) The CKD estimator is used to produce an estimate of the full wind power 

density conditional on each value for wind speed from zero to 30 m/s with an increment 
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of 0.1 m/s. The result is 301 different wind speed values and their corresponding 

conditional wind power density estimates, which are stored for use in Stage 2.  

(2) Monte Carlo simulation of the bivariate VARMA-GARCH model of Section 3 

is performed to generate 1,000 realizations of wind speed for a selected lead time. These 

1,000 values can be considered as sampled values from the model‟s wind speed density 

forecast. We rounded to the nearest 0.1 m/s each of the 1,000 wind speed simulated 

values, and then obtained the corresponding conditional wind power density estimates, 

which had been stored in Stage 1.  

(3) The 1,000 wind power density estimates from Stage 2 are averaged to give a 

single wind power density forecast.  

In the approach, 30 m/s was chosen, as it was perceived as being the maximum 

possible wind speed. We considered finer increments than 0.1 m/s, but this led to 

increased computational cost, without noticeably improving density forecast accuracy. 

With regard to bandwidth selection for CKD estimation, the literature can be 

divided into two categories, namely a rule-based approach (Hall et al. 1999; Bashtannyk 

and Hyndman 2001; Hyndman and Yao 2002) and a data-driven approach (Fan and Yim 

2004; Hall et al. 2004). Hall et al. (2004) comment that there is no general rule for the 

optimal bandwidth parameter, and that cross-validation delivers more appropriate 

bandwidths, particularly when multiple explanatory variables are involved, such as in 

Section 6.2, where we use wind speed and direction. Fan and Yim (2004) find that cross-

validation outperforms rule-based approaches. Holmes et al. (2007) write that rule-based 

approaches tend to perform poorly in finite samples when the reference distribution is not 

suitable. In this paper, we use cross-validation. To reduce the computational time, the 

parallel computing toolbox of Matlab is used. The source code is available upon request.  
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In the cross-validation, we selected the kernel bandwidths that led to the most 

accurate wind power density estimates, conditional on observed wind speed, where 

accuracy was measured by the mean continuous ranked probability score (CRPS) 

calculated over the cross-validation evaluation period for one hour ahead prediction. The 

CRPS captures the two important characteristics of a density forecast: its location relative 

to the observed value and its sharpness around that value (see Gneiting et al. 2007).  

For the kernel density estimation methods, we used a rolling window of six 

months. This amounted to 50% of the length of the entire dataset. The penultimate 25% 

of the dataset was used as the cross-validation evaluation period, and the last 25% of the 

dataset was used for post-sample evaluation of the wind power density forecasts. The 

bivariate VARMA-GARCH model was estimated using the first 75% of the data. 

Elsewhere in the paper, we refer to this as the „in-sample‟ period of data. 

We used a fixed length rolling window in the kernel density estimation methods 

because the optimized bandwidths tended to vary with the length of the rolling window, 

with the bandwidths tending to be larger for shorter windows. The six-month rolling 

window was not updated every forecast origin, but updated every 24 hours in order to 

reduce computational running time. We experimented with rolling window lengths of 

three months and one month, and found that the resultant wind power density forecast 

accuracy was very similar to that for the six-month window. However, this was not the 

case when conditioning CKD estimation on wind speed and wind direction, which is 

described in the next section. For this, we found that density forecast accuracy for 

prediction up to one day ahead reduced when the shorter window lengths were used. 
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Hyndman et al. (1996) suggest the use of different bandwidths for different values 

of the explanatory variable x. We experimented with a different value of hx for different 

ranges of wind speed values. However, this did not lead to a clear benefit in accuracy. 

6.2. CKD Estimation Conditional on Wind Speed and Wind Direction 

In Section 2, we discussed how the relationship between wind power and wind 

speed can vary with wind direction. Therefore, it seems sensible to consider the use of a 

wind power CKD estimator with conditioning on both wind speed and direction. As we 

discussed briefly in Section 5, Hyndman et al. (1996) and Juban et al. (2007) provide 

applications of CKD estimation with more than one explanatory variable. In our 

application, we use the transformation to Cartesian coordinates discussed in Section 3, 

and condition wind power density estimation on the wind velocities Ut and Vt. In Figure 8, 

using the in-sample data, we plot the historical relationship between wind power and the 

two velocities. In expression (8), we present the Rosenblatt CKD estimator for wind 

power conditional on Ut and Vt.  

 .

)()(

)()()(

),|(
~

1

1














n

t

thth

n

t

ththth

vVKuUK

yYKvVKuUK

vuyf

uvuv

yuvuv

          (8) 

 This estimator involves two bandwidths, huv and hy. We obtained slightly 

improved wind power density forecast accuracy when using different bandwidths for the 

kernels in the u and v directions. However, as the improvement was not substantial, for 

the sake of simplicity, in this paper, we treat these bandwidths as being identical.  

We implemented the three-stage CKD-based approach described in Section 6.1. 

In that section, we considered wind speed values from zero to 30 m/s with an increment 

of 0.1 m/s. In this section, we replace this with u and v values from -30 m/s to 30 m/s 
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with an increment of 0.5 m/s. We used the larger increment to compensate for the 

additional computational cost due to the increased dimension size. (Using an increment of 

0.1 m/s did not lead to noticeable improvement in wind power density forecast accuracy.) 

6.3. CKD Estimation with Time Decay 

The relationship between wind power and the explanatory variables, wind speed 

and direction, can evolve over time, as discussed in Section 4 and suggested by Figure 4. 

One way of addressing the time-variation is to use only recent information. This could be 

enabled by basing estimation on a rolling window. An alternative, which uses all 

historical data, is to employ a time decay factor. After observing that the power curve 

changes over time,   nche  (2006) employs a time decay factor within a recursive least 

square technique for estimating the time-varying parameters of a model to be used for 

wind power point forecasting. In expression (9), we present the Rosenblatt CKD 

estimator of expression (5) with an exponential time decay parameter  (0<≤1).  
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A lower value of  implies faster exponential decay, and hence more weight is 

given to the recent observations. This allows for a power curve that evolves due to factors 

that cannot be modeled explicitly in the CKD estimation framework. We optimized , 

along with the bandwidths, using cross-validation. We also considered the use of the time 

decay factor within the multi-dimensional CKD estimator of expression (8).  
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7. EMPIRICAL COMPARISON OF POST-SAMPLE FORECAST ACCURACY 

We compared the accuracy of wind power density forecasts from the CKD-based 

approach with the accuracy of simpler and more traditional methods. As stated previously, 

we used the last 25% of each of the four wind power series for post-sample forecast 

evaluation. We considered forecasts from 1 to 72 hours ahead. For each wind power 

series, we rolled the forecast origin forward (one hour at a time) through the post-sample 

evaluation period to produce a collection of forecasts from each method for each horizon.  

7.1. Methods  

We implemented three different categories of density forecasting methods: 

1. Simple kernel density estimation – As a relatively simple benchmark method, 

we applied kernel density estimation to a moving window of recent historical wind power 

observations. This relatively simple estimator is written as 
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We considered three versions of the method using the following different lengths, 

l, for the moving window: (i) 24 hours, (ii) 10 days and (iii) 6 months. 

2. Conditioning on wind speed – We implemented the following three methods 

that produced wind power density forecasts conditional on just the wind speed variable: 

(i) Deterministic with wind speed – The power curve is assumed to be 

deterministic, and is estimated using the Nadaraya-Watson estimator for the conditional 

mean. Based on this deterministic power curve, wind speed density forecasts are 

converted, using Monte Carlo simulation, into wind power density forecasts. This 

estimator captures the uncertainty in wind power due to wind speed uncertainty, but not 
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the uncertainty due to the power curve. This is a relatively sophisticated benchmark 

against which to compare the CKD-based methods. 

(ii) CKD with wind speed – This is the three-stage method of Section 6.1 based 

on the CKD estimator of expression (5). 

(iii) CKD with wind speed – This is the three-stage method of Section 6.1 based 

on the CKD estimator with exponential decay of expression (9).  

 3. Conditioning on wind velocities – We implemented the three methods just 

described with conditioning on wind speed replaced by conditioning on the two wind 

velocities, Ut and Vt. For these three methods, Table 2 presents the bandwidths and 

exponential weights optimized using cross-validation. Four of the bandwidths for CKD 

are larger than the corresponding bandwidths for CKD, and the opposite is true for two of 

the bandwidths. We would suggest larger bandwidths for CKD is intuitive because 

exponential decay leads to less historical information being captured, and so there is a 

need for a greater degree of kernel smoothing, and this is manifested in larger values for 

the bandwidths. This effect was observed by Taylor (2008) for an exponentially weighted 

kernel quantile estimator. 

To gain insight into the density forecasts produced by the various methods, in 

Figure 9, we plot the forecasts of the cumulative distribution function (cdf) produced for 

Aeolos and Rokas with forecast origin set as the final period in the in-sample set of data. 

We would expect the cdf forecasts from the CKD-based methods to be wider than those 

from a method based on a deterministic power curve, because the CKD-based methods 

involve the modeling of an additional uncertainty, namely the stochastic power curve. 

This is far more apparent in the plot for the Rokas wind farm than the one for Aeolos. 

This is because the corresponding wind speed density forecast for Aeolos was relatively 
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wide, with the effect that this uncertainty substantially dominated the uncertainty due to 

the power curve. For Rokas, the cdf forecast from the CKD method is noticeably 

different to that from the other CKD-based method. This is not the case for Aeolos, and 

this is because the value of the CKD method exponential time decay parameter is 0.999, 

which is relatively high, implying slow decay, while the value for Rokas is 0.995. 

7.2. Point Forecasting 

Although our main focus is density forecasting, we also evaluate point forecast 

accuracy, as this provides insight into the accuracy of the central locations of the density 

forecasts. We evaluated point forecasts using the mean absolute error (MAE) and the root 

mean squared error (RMSE). Gneiting (2011a,b) notes that the median of a density 

forecast is the optimal point forecast if the loss function is symmetric piecewise linear, 

and the mean is the optimal point forecast for a quadratic loss function. In view of this, 

we used the MAE for point forecasts produced as the medians of the density forecasts, 

and the RMSE for point forecasts produced as the means of the density forecasts. 

For each of the four Greek datasets, and for each method, we calculated the MAE 

and RMSE of point forecasts for each forecast horizon from 1 to 72 hours ahead. Table 3 

presents the MAE, averaged over the four wind farms, for various lead times and groups 

of lead times. We report accuracy for the earlier lead times in more detail because it 

seems likely that statistical methods will have more to offer over atmospheric models for 

short lead times. The final column of the table summarizes accuracy across all 72 lead 

times. In the table, the bold font indicates the best performing method at each lead time. 

For the RMSE, the rankings of the methods were very similar to those for the MAE, and 

so for conciseness we do not report the RMSE results.  
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Table 3 shows that the three simple kernel density estimation methods performed 

relatively poorly in terms of point forecast accuracy. All three versions of the method 

were comfortably outperformed by the other methods at all lead times. Turning to the 

three methods that produce forecasts conditional on wind speed, Table 3 shows that the 

three produced fairly similar results, with the CKD-based method with exponential time 

decay being a little more accurate than the other two methods. It is interesting to note that 

each of these three methods, conditional on just wind speed, is outperformed at all lead 

times by the corresponding method that produces forecasts conditional on the two wind 

velocity variables.  

7.3. Density Forecasting 

To evaluate density forecast accuracy at each lead time, we calculated the CRPS 

averaged across the four wind farms. In Table 4, we summarize these results using the 

same format as in Table 3 for point forecasting. As with the point forecasting, the three 

simple kernel density estimation methods performed relatively poorly in terms of density 

forecasting. Also consistent with the point forecasting results is the superiority of each 

method conditional on wind velocities when compared with the corresponding method 

conditional on just wind speed. It would seem that wind power density forecast accuracy 

does benefit by modeling wind power in terms of both wind speed and direction. 

If we focus on the three methods that are conditional on wind velocities, we see 

from Table 4 that the two CKD-based methods outperform the method that assumed a 

deterministic power curve. The same comment can be made regarding the three methods 

conditional on just wind speed. Comparing the methods based on CKD, we can see that 

accuracy improved with the inclusion of the exponential time decay parameter. 
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Figure 10 provides further post-sample evaluation of the density forecasting 

methods by showing histogram plots of the probability integral transform (PIT) (see 

Diebold et al. 1998; Gneiting et al. 2007). We show the PIT values for lead times of 1, 4, 

12, 24 and 72 hours, and for four methods: the simple kernel density estimation method 

using a 10-day moving window, and the three methods conditional on the wind velocities. 

The histograms correspond to the PIT values for all four Greek wind farms. The optimal 

shape of a PIT histogram is a uniform distribution. The simple kernel estimation method 

and the method based on the deterministic power curve show a high peak in both tails, 

demonstrating that their density forecasts are too narrow, underestimating the tail risk. 

The histogram plots for the two CKD-based methods are closer to uniform distributions.  

7.4. Quantile Forecasting 

Interest often lies in the accurate estimation of tail quantiles or a certain prediction 

interval. For example, the estimation of tail quantiles provides useful information to 

support trading based on future production (Pinson et al. 2007). Furthermore, Gneiting 

(2011a) and Pinson et al. (2007) show that a quantile forecast, other than the mean or 

median, can be the optimal point forecast in situations where there is an asymmetric cost 

function.  

To evaluate the quantile forecasts, we use the hit percentage. This measure 

assesses the unconditional coverage of a  conditional quantile estimator. It is the 

percentage of observations falling below the estimator. Ideally, the percentage should be 

. The measure can be viewed as complimenting the CRPS and PIT in evaluating the 

density forecasts. For all the density forecasting methods, we obtained the hit percentage 

for the 5% quantile forecasts from the density forecasts of each method. We then 

calculated the absolute value of the difference between the hit percentage and the ideal 
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value of 5%. Averaging this value across the four Greek wind farm datasets delivered the 

values reported in Table 5. As with point forecast evaluation, smaller values of this mean 

absolute error measure are better. Table 6 reports the analogous measure for the 

evaluation of forecasts of the 95% quantile.  

Looking first at the results for the simple kernel density estimation methods, we 

see that the methods performed relatively poorly for the 5% quantile, but for the 95% 

quantile, the version of the method based on a moving window of 10 days was more 

competitive. It is interesting to see that all the CKD-based methods clearly outperformed 

the deterministic power curve methods at each lead time for both the 5% and 95% 

quantiles.  

8. CONCLUSION 

In this paper, we have introduced an approach to wind power density forecasting 

that captures the uncertainty due to wind speed, as well as the uncertainty due to the 

stochastic nature of the power curve. The approach involves Monte Carlo simulation of a 

statistical model and CKD estimation. We considered extensions of the approach that 

allow for conditioning on both wind speed and direction, and allow the inclusion of 

exponential time decay. Post-sample density forecasting results show that the new 

approach was able to outperform a simpler version based on a deterministic power curve, 

as well as simple benchmark methods.  

In terms of future work, it would be interesting to consider additional explanatory 

variables, such as temperature and air pressure, and perhaps also weather information at 

upwind locations. In this paper, we have used time series models to produce density 

forecasts for the meteorological explanatory variables, but an alternative would be to base 
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these forecasts on ensemble predictions from an atmospheric model. One might anticipate 

that this would be particularly advantageous for the longer lead times. If it is only certain 

quantiles of the wind power density that are needed (see Pinson et al. 2007), then it may 

be beneficial to optimize the CKD bandwidths separately for each quantile of interest, 

rather than for the whole density using CRPS. It would also be interesting to consider the 

use of the CKD-based approach in this paper for predicting the density of the total wind 

power produced from many wind farms. This could be used by an electricity system 

operator to make decisions regarding operating reserve. An additional application of the 

CKD-based approach would be to generate a density forecast for the electricity load 

conditional on density forecasts for various meteorological variables. 
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Table 1.  Summary of the VARMA-GARCH model of expressions (1)-(4) fitted to 
the in-sample data for the Aeolos wind farm. Standard errors are given in 
parentheses. 

  Gaussian Student t skewed t 

Axes-rotation parameter  
15.2° 

(0.4°) 

30.1° 

(2.7°) 

32.3° 

(2.1°) 

Degrees of freedom  
4.05 

(0.10) 

3.98 

(0.09) 

Skewness parameter for Ut   
-0.009 

(0.028) 

Skewness parameter for Vt   
-0.084 

(0.029) 

AR order (r) 6 1 2 

MA order (m) 1 2 3 

ARMA diurnal (N) 1 0 0 

ARCH order (q) 2 1 1 

GARCH order (p) 1 1 1 

GARCH diurnal (N) 0 0 0 

ARMA eigenvalues 
0.89 

0.44 

0.93 

0.72 

0.75 

0.75 

GARCH eigenvalues 

1.00 

0.82 

0.82 

1.00 

0.78 

0.71 

1.00 

0.83 

0.65 

 

 

 

Table 2.  Bandwidths and decay parameters optimized using cross-validation for the 

three density forecasting methods that are conditional on the two wind velocities, Ut 

and Vt.  

Method Wind farm 
Bandwidth huv 

(m/s) 

Bandwidth he 

(MW) 
 (half-life) 

Deterministic Aeolos 0.74   

 Rokas 0.51   

 Enteka 0.63   

 Iweco 0.55   

     

CKD Aeolos 0.93 0.21  

 Rokas 0.68 0.25  

 Enteka 0.59 0.04  

 Iweco 0.71 0.04  

     

CKD Aeolos 1.03 0.14 0.999  (28.9 days) 

 Rokas 0.61 0.64 0.995  (5.8 days) 

 Enteka 0.70 0.05 0.997  (9.6 days) 

 Iweco 0.71 0.04 0.999  (28.9 days) 



29 

Table 3.  Evaluation of post-sample wind power point forecast accuracy in MW 

using MAE averaged over the four Greek datasets. Smaller values are better. Point 

forecasts are medians of density forecasts. 

 

Lead Time (hours): 1 2 3-4 5-6 7-8 9-12 13-24 25-48 49-60 61-72 1-72 

Simple kernel density estimation  

   24 hours 2.44 2.45 2.48 2.51 2.54 2.56 2.60 2.73 2.83 2.88 2.71 

   10 days 2.66 2.66 2.66 2.66 2.66 2.67 2.67 2.66 2.65 2.63 2.66 

   6 months 3.02 3.02 3.02 3.02 3.02 3.02 3.03 3.04 3.04 3.04 3.04 

            

Conditioning on wind speed 

   Deterministic 0.91 1.07 1.23 1.37 1.50 1.64 1.94 2.35 2.57 2.59 2.20 

   CKD 0.93 1.08 1.23 1.38 1.50 1.63 1.92 2.32 2.52 2.55 2.17 

   CKD 0.91 1.05 1.20 1.35 1.46 1.59 1.86 2.25 2.44 2.46 2.11 

            

Conditioning on wind velocities 

   Deterministic 0.90 1.04 1.19 1.34 1.45 1.61 1.89 2.31 2.50 2.51 2.17 

   CKD 0.91 1.05 1.19 1.34 1.44 1.59 1.87 2.27 2.45 2.46 2.11 

   CKD 0.89 1.03 1.17 1.31 1.42 1.56 1.84 2.23 2.40 2.41 2.07 
 
NOTE:  The best performing model at each lead time is in bold. 

 

 

 

 

Table 4.  Evaluation of post-sample wind power density forecast accuracy in MW 

using CRPS averaged over the four Greek datasets. Smaller values are better. 

 

Lead Time (hours): 1 2 3-4 5-6 7-8 9-12 13-24 25-48 49-60 61-72 1-72 

Simple kernel density estimation  

   24 hours 1.74 1.75 1.77 1.80 1.82 1.83 1.86 1.95 2.03 2.07 1.95 

   10 days 1.79 1.80 1.80 1.80 1.80 1.80 1.81 1.80 1.79 1.78 1.80 

   6 months 2.04 2.04 2.04 2.04 2.04 2.04 2.05 2.05 2.05 2.05 2.05 

            

Conditioning on wind speed 

   Deterministic 0.72 0.82 0.91 1.00 1.07 1.17 1.34 1.56 1.64 1.65 1.47 

   CKD 0.66 0.76 0.86 0.95 1.03 1.13 1.30 1.54 1.61 1.62 1.44 

   CKD 0.64 0.74 0.83 0.93 1.01 1.10 1.27 1.50 1.58 1.59 1.40 

            

Conditioning on wind velocities 

   Deterministic 0.70 0.79 0.88 0.97 1.03 1.12 1.30 1.52 1.60 1.61 1.43 

   CKD 0.65 0.74 0.83 0.93 1.00 1.09 1.27 1.49 1.57 1.57 1.39 

   CKD 0.63 0.72 0.81 0.91 0.98 1.07 1.25 1.47 1.55 1.56 1.37 
 
NOTE:  The best performing model at each lead time is in bold. 
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Table 5.  Evaluation of post-sample forecast accuracy for the 5% wind power 

quantile using absolute hit percentage error averaged over the four Greek datasets. 

Smaller values are better. 

 

Lead Time (hours): 1 2 3-4 5-6 7-8 9-12 13-24 25-48 49-60 61-72 1-72 

Simple kernel density estimation  

   24 hours 24.7 24.7 25.0 25.0 25.5 25.5 25.7 27.1 27.8 28.1 26.8 

   10 days 23.0 23.0 23.1 23.1 23.3 23.2 23.6 23.7 23.7 23.5 23.6 

   6 months 27.2 27.3 27.1 27.2 27.2 27.4 27.6 27.9 27.8 27.9 27.7 

            

Conditioning on wind speed 

   Deterministic 26.6 23.9 22.1 20.7 19.7 18.5 17.7 16.6 15.8 15.5 17.1 

   CKD 2.4 1.9 2.1 2.0 2.2 2.6 2.7 2.8 3.3 3.6 2.9 

   CKD 2.7 2.7 2.9 2.6 2.4 2.3 2.8 4.2 5.0 5.5 4.0 

            

Conditioning on wind velocities 

   Deterministic 26.6 23.7 22.0 20.9 19.9 18.8 17.8 17.1 16.6 16.2 17.7 

   CKD 1.8 1.8 2.2 2.4 2.6 2.8 3.0 3.2 3.6 4.1 3.2 

   CKD 2.8 3.1 3.1 2.9 2.8 2.5 2.7 4.0 4.8 5.3 3.9 
 
NOTE:  The best performing model at each lead time is in bold. 

 

 

 

 

Table 6.  Evaluation of post-sample forecast accuracy for the 95% wind power 

quantile using absolute hit percentage error averaged over the four Greek datasets. 

Smaller values are better. 

 

Lead Time (hours): 1 2 3-4 5-6 7-8 9-12 13-24 25-48 49-60 61-72 1-72 

Simple kernel density estimation  

   24 hours 3.8 4.0 4.2 4.5 4.6 4.7 4.8 5.7 6.7 7.1 5.8 

   10 days 1.6 1.6 1.8 1.7 1.8 1.7 1.8 1.8 2.0 2.2 1.9 

   6 months 4.4 4.5 4.5 4.5 4.5 4.5 4.4 4.4 4.4 4.5 4.4 

            

Conditioning on wind speed 

   Deterministic 9.0 7.9 7.3 6.8 6.5 6.5 6.1 5.7 5.7 5.9 6.0 

   CKD 1.8 1.5 1.1 0.8 0.8 0.4 0.9 1.8 2.6 2.9 1.8 

   CKD 1.3 0.9 0.8 0.7 0.4 0.3 1.0 2.0 2.8 3.1 1.9 

            

Conditioning on wind velocities 

   Deterministic 7.3 6.4 5.6 5.0 4.8 4.8 4.4 4.6 4.8 5.1 4.7 

   CKD 1.9 1.7 1.3 1.1 0.9 0.7 0.7 1.7 2.3 2.6 1.7 

   CKD 1.6 1.2 0.9 0.9 0.6 0.5 1.1 1.6 2.1 2.3 1.6 
 
NOTE:  The best performing model at each lead time is in bold. 
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Figure 1.  Wind speed, direction and power time series for the Aeolos wind farm. 

 

 

 

 

 

 
Figure 2. Angular histogram of wind direction (left). A Cartesian plot of wind speed 

and direction (right), where the distance of each observation from the origin is the 

strength of the wind speed. The plots use in-sample data for the Aeolos wind farm.   
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Figure 3. Plot of wind power against wind speed using the in-sample data for the 

Aeolos and the Rokas wind farms. 

 

 

 

 
Figure 4. Plot of wind power against wind speed for selected months of the in-

sample data for the Aeolos and the Rokas wind farms.   

 

 

 

 
Figure 5. Plot of wind power against wind speed for two selected wind directions 

using the in-sample data for the Aeolos and the Rokas wind farms. 
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Figure 6.  Plot of wind power against wind speed and wind direction (left) and, to 

help interpretation of this plot, a smooth surface fitted using a Nadaraya-Watson 

estimator (right). The plots use in-sample data for the Aeolos wind farm. 

 

 

 
 

Figure 7.  Smoothed histograms of wind power for different values of wind speed. 

Smoothing performed using a Nadaraya-Watson estimator. The plots use in-sample 

data for the Aeolos wind farm. 

 
Figure 8.  Plot of wind power against wind velocity variables (left) and, to help 

interpretation of the left plot, a smooth surface fitted using a Nadaraya-Watson 

estimator (right). The plots use in-sample data for the Aeolos wind farm. 
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Figure 9.  For the Aeolos and the Rokas wind farms, four hour-ahead forecasts of 

the wind power cdf. The forecast origin is at 7pm on October 01, 2006, which was 

the final period of the in-sample set of data. The wind power observation is 

indicated by a triangular symbol on the x-axis.  

 

 

 
 

Figure 10.  Summary PIT histograms for the post-sample density forecasts for the 

Greek datasets. 


