13,438 research outputs found

    A Framework for Reference Management in the Semantic Web

    No full text
    Much of the semantic web relies upon open and unhindered interoperability between diverse systems. The successful convergence of multiple ontologies and referencing schemes is key. This is hampered by a lack of any means for managing and communicating co-references. We have therefore developed an ontology and framework for the exploration and resolution of potential co-references, in the semantic web at large, that allow the user to a) discover and record uniquely identifying attributes b) interface candidates with and create pipelines of other systems for reference management c) record identified duplicates in a usable and retrievable manner, and d) provide a consistent reference service for accessing them. This paper describes this ontology and a framework of web services designed to support and utilise it

    Spotify tailoring for promoting effectiveness in cross-functional autonomous squads

    Get PDF
    Organisations tend to tailor agile methods to scale employed practices to have cross-functional autonomous teams while promoting sustainable creative and productive development at a constant pace. Thus, it is important to investigate how organisations tailor agile practices to get the balance right between teams' autonomy and alignment. Spotify model is originally introduced to facilitate the development of music streaming services in a very large-scale project with a Business-to-Consumer (B2C) model. However, developing a large-scale mission-critical project with a Business-to-Business (B2B) model is not essentially supported by the Spotify model. Thus, embracing Spotify model for such projects should be concerned about the question of how Spotify practices are adjusted to promote the effectiveness of cross-functional autonomous squads in a mission-critical project with B2B model? In this paper, we conduct a longitudinal embedded case study, which lasted 21 months during which 14 semi-structured interviews were conducted. The Grounded Theory (GT) is adopted to analyse the collected data. As a result, we identify practices and processes that promote effectiveness in cross-functional autonomous squads, which have never been discussed in terms of Spotify model before. We also present Spotify Tailoring by highlighting modified and newly introduced practices by the organisation in which the case study was conducted

    Compressible flow structures interaction with a two-dimensional ejector: a cold-flow study

    Get PDF
    An experimental study has been conducted to examine the interaction of compressible flow structures such as shocks and vortices with a two-dimensional ejector geometry using a shock-tube facility. Three diaphragm pressure ratios ofP4 =P1 = 4, 8, and 12 have been employed, whereP4 is the driver gas pressure andP1 is the pressure within the driven compartment of the shock tube. These lead to incident shock Mach numbers of Ms = 1:34, 1.54, and 1.66, respectively. The length of the driver section of the shock tube was 700 mm. Air was used for both the driver and driven gases. High-speed shadowgraphy was employed to visualize the induced flowfield. Pressure measurements were taken at different locations along the test section to study theflow quantitatively. The induced flow is unsteady and dependent on the degree of compressibility of the initial shock wave generated by the rupture of the diaphragm

    Handling Qualities Flight Testing of the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    Get PDF
    Airborne infrared astronomy has a long successful history, albeit relatively unknown outside of the astronomy community. A major problem with ground based infrared astronomy is the absorption and scatter of infrared energy by water in the atmosphere. Observing the universe from above 40,000 ft puts the observation platform above 99% of the water vapor in the atmosphere, thereby addressing this problem at a fraction of the cost of space based systems. The Stratospheric Observatory For Infrared Astronomy (SOFIA) aircraft is the most ambitious foray into the field of airborne infrared astronomy in history. Using a 747SP (The Boeing Company, Chicago, Illinois) aircraft modified with a 2.5m telescope located in the aft section of the fuselage, the SOFIA endeavors to provide views of the universe never before possible and at a fraction of the cost of space based systems. The modification to the airplane includes moveable doors and aperture that expose the telescope assembly. The telescope assembly is aimed and stabilized using a multitude of on board systems. This modification has the potential to cause aerodynamic anomalies that could induce undesired forces either at the cavity itself or indirectly due to interference with the empennage, both of which could cause handling qualities issues. As a result, an extensive analysis and flight test program was conducted from December 2009 through March 2011. Several methods, including a Lower Order Equivalent Systems analysis and pilot assessment, were used to ascertain the effects of the modification. The SOFIA modification was found to cause no adverse handling qualities effects and the aircraft was cleared for operational use. This paper discusses the history and modification to the aircraft, development of test procedures and analysis, results of testing and analysis, lessons learned for future projects and justification for operational certification

    The landscape of quantum transitions driven by single-qubit unitary transformations with implications for entanglement

    Full text link
    This paper considers the control landscape of quantum transitions in multi-qubit systems driven by unitary transformations with single-qubit interaction terms. The two-qubit case is fully analyzed to reveal the features of the landscape including the nature of the absolute maximum and minimum, the saddle points and the absence of traps. The results permit calculating the Schmidt state starting from an arbitrary two-qubit state following the local gradient flow. The analysis of multi-qubit systems is more challenging, but the generalized Schmidt states may also be located by following the local gradient flow. Finally, we show the relation between the generalized Schmidt states and the entanglement measure based on the Bures distance

    Influential factors of aligning Spotify squads in mission-critical and offshore projects – a longitudinal embedded case study

    Get PDF
    Changing the development process of an organization is one of the toughest and riskiest decisions. This is particularly true if the known experiences and practices of the new considered ways of working are relative and subject to contextual assumptions. Spotify engineering culture is deemed as a new agile software development method which increasingly attracts large-scale organizations. The method relies on several small cross-functional self-organized teams (i.e., squads). The squad autonomy is a key driver in Spotify method, where a squad decides what to do and how to do it. To enable effective squad autonomy, each squad shall be aligned with a mission, strategy, short-term goals and other squads. Since a little known about Spotify method, there is a need to answer the question of: How can organizations work out and maintain the alignment to enable loosely coupled and tightly aligned squads? In this paper, we identify factors to support the alignment that is actually performed in practice but have never been discussed before in terms of Spotify method. We also present Spotify Tailoring by highlighting the modified and newly introduced processes to the method. Our work is based on a longitudinal embedded case study which was conducted in a real-world large-scale offshore software intensive organization that maintains mission-critical systems. According to the confidentiality agreement by the organization in question, we are not allowed to reveal a detailed description of the features of the explored project

    Optimal Control for Generating Quantum Gates in Open Dissipative Systems

    Full text link
    Optimal control methods for implementing quantum modules with least amount of relaxative loss are devised to give best approximations to unitary gates under relaxation. The potential gain by optimal control using relaxation parameters against time-optimal control is explored and exemplified in numerical and in algebraic terms: it is the method of choice to govern quantum systems within subspaces of weak relaxation whenever the drift Hamiltonian would otherwise drive the system through fast decaying modes. In a standard model system generalising decoherence-free subspaces to more realistic scenarios, openGRAPE-derived controls realise a CNOT with fidelities beyond 95% instead of at most 15% for a standard Trotter expansion. As additional benefit it requires control fields orders of magnitude lower than the bang-bang decouplings in the latter.Comment: largely expanded version, superseedes v1: 10 pages, 5 figure
    corecore