19 research outputs found

    The role of dynamical polarization of the ligand to metal charge transfer excitations in {\em ab initio} determination of effective exchange parameters

    Full text link
    The role of the bridging ligand on the effective Heisenberg coupling parameters is analyzed in detail. This analysis strongly suggests that the ligand-to-metal charge transfer excitations are responsible for a large part of the final value of the magnetic coupling constant. This permits to suggest a new variant of the Difference Dedicated Configuration Interaction (DDCI) method, presently one of the most accurate and reliable for the evaluation of magnetic effective interactions. This new method treats the bridging ligand orbitals mediating the interaction at the same level than the magnetic orbitals and preserves the high quality of the DDCI results while being much less computationally demanding. The numerical accuracy of the new approach is illustrated on various systems with one or two magnetic electrons per magnetic center. The fact that accurate results can be obtained using a rather reduced configuration interaction space opens the possibility to study more complex systems with many magnetic centers and/or many electrons per center.Comment: 7 pages, 4 figure

    Derivation of spin Hamiltonians from the exact Hamiltonian: Application to systems with two unpaired electrons per magnetic site

    Get PDF
    The foundations and limits of S=1/2 and S=1 spin Hamiltonians for systems with two unpaired electrons in two well-defined orbitals per site are discussed by merging accurate ab initio calculations in binuclear systems with the effective Hamiltonian theory. It is shown that, beyond the usual JijSi.Sj terms, the effective spin Hamiltonian necessarily introduces four-body spin operators in the S=1/2 case and biquadratic terms in the S=1 formalism. The order of magnitude of these additional terms can be rationalized from a quasidegenerate perturbation theory expansion starting from a Hubbard-type Hamiltonian. This permits to discuss the physical mechanisms governing the reduction from the all electron Hamiltonian to the spin-only Hamiltonians and the conditions under which a further reduction from a spin Hamiltonian to the simplest Heisenberg-Dirac-Van Vleck form is possible. The overall discussion is illustrated by numerical calculations of the magnetic coupling between two Ni2+ cations in the K2NiF4 perovskite and between triply bonded carbon atoms in poly-ynes

    Adsorption and inhibition effect of 2,4-diamino-6-hydroxypyrimidine for mild steel corrosion in HCl medium: experimental and theoretical investigation, Ionics

    No full text
    2,4-Diamino-6-hydroxypyrimidine (2D6H) was examined as corrosion inhibitor of mild steel (MS) in 0.1 M HCl using potentiodynamic measurements, linear polarization resistance (LPR), scanning electron microscopy, electrochemical experiments, and quantum chemical calculations. All measurements show that the corrosion inhibition effectiveness is forthright compared to the concentration of 2D6H ranging from 0.5 to 10.0 mM. Adsorption of 2D6H on the MS surface in the presence of HCl is determined to obey Langmuir adsorption isotherm. The electronic features elucidated by quantum chemical calculations were associated with the experimental inhibition productivities. The mechanism of inhibition was revealed by Epzc measurements
    corecore