7 research outputs found

    Inappropriate stereotypical inferences? An adversarial collaboration in experimental ordinary language philosophy

    Get PDF
    This paper trials new experimental methods for the analysis of natural language reasoning and the (re)development of critical ordinary language philosophy in the wake of J.L. Austin. Philosophical arguments and thought experiments are strongly shaped by default pragmatic inferences, including stereotypical inferences. Austin suggested that contextually inappropriate stereotypical inferences are at the root of some philosophical paradoxes and problems, and that these can be resolved by exposing those verbal fallacies. This paper builds on recent efforts to empirically document inappropriate stereotypical inferences that may drive philosophical arguments. We demonstrate that previously employed questionnaire-based output measures do not suffice to exclude relevant confounds. We then report an experiment that combines reading time measurements with plausibility ratings. The study seeks to provide evidence of inappropriate stereotypical inferences from appearance verbs that have been suggested to lie at the root of the influential ‘argument from illusion’. Our findings support a diagnostic reconstruction of this argument. They provide the missing component for proof of concept for an experimental implementation of critical ordinary language philosophy that is in line with the ambitions of current ‘evidential’ experimental philosophy

    GFP reporters to monitor instability and expression of expanded CAG/CTG repeats

    No full text
    Expanded CAG/CTG repeats are genetically unstable and, upon expression, cause neurological and neuromuscular diseases. The molecular mechanisms of repeat instability and expression remain poorly understood despite their importance for the pathogenesis of a family of 14 devastating human diseases. This is in part because conventional assays are tedious and time-consuming. Recently, however, GFP-based reporters have been designed to provide a rapid and reliable means of assessing these parameters. Here we provide protocols for quantifying repeat instability and expression using a GFP-based chromosomal reporter and the newly developed ParB/ANCHOR-mediated Inducible Targeting (PInT) and how to validate the results

    Quantitative mapping of fluorescently tagged cellular proteins using FCS-calibrated four-dimensional imaging

    No full text
    The ability to tag a protein at its endogenous locus with a fluorescent protein (FP) enables quantitative understanding of protein dynamics at the physiological level. Genome-editing technology has now made this powerful approach routinely applicable to mammalian cells and many other model systems, thereby opening up the possibility to systematically and quantitatively map the cellular proteome in four dimensions. 3D time-lapse confocal microscopy (4D imaging) is an essential tool for investigating spatial and temporal protein dynamics; however, it lacks the required quantitative power to make the kind of absolute and comparable measurements required for systems analysis. In contrast, fluorescence correlation spectroscopy (FCS) provides quantitative proteomic and biophysical parameters such as protein concentration, hydrodynamic radius, and oligomerization but lacks the capability for high-throughput application in 4D spatial and temporal imaging. Here we present an automated experimental and computational workflow that integrates both methods and delivers quantitative 4D imaging data in high throughput. These data are processed to yield a calibration curve relating the fluorescence intensities (FIs) of image voxels to the absolute protein abundance. The calibration curve allows the conversion of the arbitrary FIs to protein amounts for all voxels of 4D imaging stacks. Using our workflow, users can acquire and analyze hundreds of FCS-calibrated image series to map their proteins of interest in four dimensions. Compared with other protocols, the current protocol does not require additional calibration standards and provides an automated acquisition pipeline for FCS and imaging data. The protocol can be completed in 1 d

    Transcriptional activation during cell reprogramming correlates with the formation of 3D open chromatin hubs

    Get PDF
    Chromosome structure is a crucial regulatory factor for a wide range of nuclear processes. Chromosome conformation capture (3C)-based experiments combined with computational modelling are pivotal for unveiling 3D chromosome structure. Here, we introduce TADdyn, a tool that integrates time-course 3C data, restraint-based modelling, and molecular dynamics to simulate the structural rearrangements of genomic loci in a completely data-driven way. We apply TADdyn on in situ Hi-C time-course experiments studying the reprogramming of murine B cells to pluripotent cells, and characterize the structural rearrangements that take place upon changes in the transcriptional state of 21 genomic loci of diverse expression dynamics. By measuring various structural and dynamical properties, we find that during gene activation, the transcription starting site contacts with open and active regions in 3D chromatin domains. We propose that these 3D hubs of open and active chromatin may constitute a general feature to trigger and maintain gene transcription.This work was partially supported by the European Research Council under the 7th Framework Program FP7/2007-2013 (ERC grant agreement 609989 to M.A.M-R. and T.G.), the European Union’s Horizon 2020 research and innovation programme (grant agreement 676556 to M.A.M-R.) and the Spanish Ministerio de Ciencia e Innovación (BFU2013-47736-P and BFU2017-85926-P to M.A.M-R. as well as IJCI-2015-23352 to I.F.). R.S. is supported by the Netherlands Organization for Scientific Research (VENI 91617114) and an Erasmus MC Fellowship. We also knowledge support from “Centro de Excelencia Severo Ochoa 2013-2017”, SEV-2012-0208 the Spanish ministry of Science and Innovation to the EMBL partnership and the CERCA Programme/Generalitat de Catalunya to the CRG. We also acknowledge support of the Spanish Ministry of Science and Innovation through the Instituto de Salud Carlos III, the Generalitat de Catalunya through Departament de Salut and Departament d’Empresa i Coneixement and the Co-financing by the Spanish Ministry of Science and Innovation with funds from the European Regional Development Fund (ERDF) corresponding to the 2014-2020 Smart Growth Operating Program to CNA

    Nascent RNA analyses: tracking transcription and its regulation

    No full text
    corecore