231 research outputs found

    The Advanced Composition Explorer

    Get PDF
    The Advanced Composition Explorer (ACE) was recently selected as one of two new Explorer‐class missions to be developed for launch during the mid‐1990’s ACE will observe particles of solar, interplanetary, interstellar, and galactic origins, spanning the energy range from that of the solar wind (∼1 keV/nucleon) to galactic cosmic ray energies (several hundred MeV/nucleon). Definitive studies will be made of the abundance of nearly all isotopes from H to Zn (1≤Z≤30), with exploratory isotope studies extending to Zr(Z=40). To accomplish this, the ACE payload includes six high‐resolution spectrometers, each designed to provide the optimum charge, mass, or charge‐state resolution in its particular energy range, and each having a geometry factor optimized for the expected flux levels, so as to provide a collecting power a factor of 10 to 1000 times greater than previous or planned experiments. The payload also includes several instruments of standard design that will monitor solar wind and magnetic field conditions and energetic H, He, and electron fluxes. We summarize here the scientific objectives, instrumentation, spacecraft, and mission approach that were defined for ACE during the Phase‐A study period

    Colorado Plateau Coring Project, Phase I (CPCP-I): a continuously cored, globally exportable chronology of Triassic continental environmental change from western North America

    Get PDF
    Phase 1 of the Colorado Plateau Coring Project (CPCP-I) recovered a total of over 850&thinsp;m of stratigraphically overlapping core from three coreholes at two sites in the Early to Middle and Late Triassic age largely fluvial Moenkopi and Chinle formations in Petrified Forest National Park (PFNP), northeastern Arizona, USA. Coring took place during November and December of 2013 and the project is now in its post-drilling science phase. The CPCP cores have abundant detrital zircon-producing layers (with survey LA-ICP-MS dates selectively resampled for CA-ID-TIMS U-Pb ages ranging in age from at least 210 to 241&thinsp;Ma), which together with their magnetic polarity stratigraphy demonstrate that a globally exportable timescale can be produced from these continental sequences and in the process show that a prominent gap in the calibrated Phanerozoic record can be filled. The portion of core CPCP-PFNP13-1A for which the polarity stratigraphy has been completed thus far spans  ∼ 215 to 209&thinsp;Ma of the Late Triassic age, and strongly validates the longer Newark-Hartford Astrochronostratigraphic-calibrated magnetic Polarity Time-Scale (APTS) based on cores recovered in the 1990s during the Newark Basin Coring Project (NBCP).Core recovery was  ∼ 100&thinsp;% in all holes (Table 1). The coreholes were inclined  ∼ 60–75° approximately to the south to ensure azimuthal orientation in the nearly flat-lying bedding, critical to the interpretation of paleomagentic polarity stratigraphy. The two longest of the cores (CPCP-PFNP13-1A and 2B) were CT-scanned in their entirety at the University of Texas High Resolution X-ray CT Facility in Austin, TX, and subsequently along with 2A, all cores were split and processed at the CSDCO/LacCore Facility, in Minneapolis, MN, where they were scanned for physical property logs and imaging. While remaining the property of the Federal Government, the archive half of each core is curated at the NSF-sponsored LacCore Core Repository and the working half is stored at the Rutgers University Core Repository in Piscataway, NJ, where the initial sampling party was held in 2015 with several additional sampling events following. Additional planned study will recover the rest of the polarity stratigraphy of the cores as additional zircon ages, sedimentary structure and paleosol facies analysis, stable isotope geochemistry, and calibrated XRF core scanning are accomplished. Together with strategic outcrop studies in Petrified Forest National Park and environs, these cores will allow the vast amount of surface paleontological and paleoenvironmental information recorded in the continental Triassic of western North America to be confidently placed in a secure context along with important events such as the giant Manicouagan impact at  ∼ 215.5&thinsp;Ma (Ramezani et al., 2005) and long wavelength astronomical cycles pacing global environmental change and trends in atmospheric gas composition during the dawn of the dinosaurs.</p

    蓮華寺池と西湖 : 石野雲嶺の風景

    Get PDF
    The potential for increased drought frequency and severity linked to anthropogenic climate change in the semi-arid regions of the southwestern United States (US) is a serious concern1. Multi-year droughts during the instrumental period2 and decadal-length droughts of the past two millennia1, 3 were shorter and climatically different from the future permanent, ‘dust-bowl-like’ megadrought conditions, lasting decades to a century, that are predicted as a consequence of warming4. So far, it has been unclear whether or not such megadroughts occurred in the southwestern US, and, if so, with what regularity and intensity. Here we show that periods of aridity lasting centuries to millennia occurred in the southwestern US during mid-Pleistocene interglacials. Using molecular palaeotemperature proxies5 to reconstruct the mean annual temperature (MAT) in mid-Pleistocene lacustrine sediment from the Valles Caldera, New Mexico, we found that the driest conditions occurred during the warmest phases of interglacials, when the MAT was comparable to or higher than the modern MAT. A collapse of drought-tolerant C4 plant communities during these warm, dry intervals indicates a significant reduction in summer precipitation, possibly in response to a poleward migration of the subtropical dry zone. Three MAT cycles ~2 °C in amplitude occurred within Marine Isotope Stage (MIS) 11 and seem to correspond to the muted precessional cycles within this interglacial. In comparison with MIS 11, MIS 13 experienced higher precessional-cycle amplitudes, larger variations in MAT (4–6 °C) and a longer period of extended warmth, suggesting that local insolation variations were important to interglacial climatic variability in the southwestern US. Comparison of the early MIS 11 climate record with the Holocene record shows many similarities and implies that, in the absence of anthropogenic forcing, the region should be entering a cooler and wetter phase

    A Perspective Distilled from Seventy Years of Research

    Full text link
    corecore