298 research outputs found

    Testing Beam-Induced Quench Levels of LHC Superconducting Magnets

    Full text link
    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electro-thermal models, thus allowing to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for Run 2.Comment: 19 page

    Experimental Setup to Characterize the Radiation Hardness of Cryogenic Bypass Diodes for the HL-LHC Inner Triplet Circuits

    Get PDF
    For the high luminosity upgrade of the Large Hadron Collider (LHC), it is planned to replace the existing triplet quadrupole magnets with Nb₃Sn quadrupole magnets, which provide a comparable integrated field gradient with a significantly increased aperture. These magnets will be powered through a novel superconducting link based on MgB₂ cables. One option for the powering layout of this triplet circuit is the use of cryogenic bypass diodes, where the diodes are located inside an extension to the magnet cryostat and operated in superfluid helium. Hence, they are exposed to radiation. For this reason the radiation hardness of existing LHC type bypass diodes and more radiation tolerant prototype diodes needs to be tested up to the radiation doses expected at their planned position during their lifetime. A first irradiation test is planned in CERN's CHARM facility starting in spring 2018. Therefore, a cryo-cooler based cryostat to irradiate and test LHC type diodes in-situ has been designed and constructed. This paper will describe the properties of the sample diodes, the experimental roadmap and the setup installed in CHARM. Finally, the first measurement results will be discussed

    Epigenetic Silencing of IRF7 and/or IRF5 in Lung Cancer Cells Leads to Increased Sensitivity to Oncolytic Viruses

    Get PDF
    Defective IFN signaling results in loss of innate immunity and sensitizes cells to enhanced cytolytic killing after Vesticular Stomatitis Virus (VSV) infection. Examination of the innate immunity status of normal human bronchial epithelial cells Beas2B and 7 lung cancer cells revealed that the abrogation of IFN signaling in cancer cells is associated with greater sensitivity to VSV infection. The disruption of the IFN pathway in lung cancer cell lines and primary tumor tissues is caused by epigenetic silencing of critical interferon responsive transcription factors IRF7 and/or IRF5. Although 5-aza-2′-deoxycytidine treatment fails to reactivate IRF7 and IRF5 expression or protect cells from VSV infection, manipulating IFN signaling by altering IRF expression changes the viral susceptibility of these cells. Lung cancer cells can be partially protected from viral killing using IRF5+IRF7 overexpression, whereas IFN pathway disruption by transfection of siRNAs to IRF5+IRF7 increases cells' vulnerability to viral infection. Therefore, IRF5 and IRF7 are key transcription factors in IFN pathway that determine viral sensitivity of lung cancer cells; the epigenetically impaired IFN pathway in lung cancer tissues provides potential biomarkers for successful selective killing of cancer cells by oncolytic viral therapy

    Update on Beam Induced RF Heating in the LHC

    Get PDF
    Since June 2011 the rapid increase of the luminosity performance of the LHC has come at the expense of both increased temperature and pressure of specific, near-beam, LHC equipment. In some cases, this beam induced heating has caused delays while equipment cool-down, beam dumps and even degradation of some devices. This contribution gathers the observations of beam induced heating, attributed to longitudinal beam coupling impedance, their current level of understanding and possible actions planned to be implemented during the 1st LHC Long Shutdown (LS1) in 2013-2014

    Structure of the Head of the Bartonella Adhesin BadA

    Get PDF
    Trimeric autotransporter adhesins (TAAs) are a major class of proteins by which pathogenic proteobacteria adhere to their hosts. Prominent examples include Yersinia YadA, Haemophilus Hia and Hsf, Moraxella UspA1 and A2, and Neisseria NadA. TAAs also occur in symbiotic and environmental species and presumably represent a general solution to the problem of adhesion in proteobacteria. The general structure of TAAs follows a head-stalk-anchor architecture, where the heads are the primary mediators of attachment and autoagglutination. In the major adhesin of Bartonella henselae, BadA, the head consists of three domains, the N-terminal of which shows strong sequence similarity to the head of Yersinia YadA. The two other domains were not recognizably similar to any protein of known structure. We therefore determined their crystal structure to a resolution of 1.1 Å. Both domains are β-prisms, the N-terminal one formed by interleaved, five-stranded β-meanders parallel to the trimer axis and the C-terminal one by five-stranded β-meanders orthogonal to the axis. Despite the absence of statistically significant sequence similarity, the two domains are structurally similar to domains from Haemophilus Hia, albeit in permuted order. Thus, the BadA head appears to be a chimera of domains seen in two other TAAs, YadA and Hia, highlighting the combinatorial evolutionary strategy taken by pathogens

    The Moraxella adhesin UspA1 binds to its human CEACAM1 receptor by a deformable trimeric coiled-coil

    Get PDF
    Moraxella catarrhalis is a ubiquitous human-specific bacterium commonly associated with upper and lower respiratory tract infections, including otitis media, sinusitis and chronic obstructive pulmonary disease. The bacterium uses an autotransporter protein UspA1 to target an important human cellular receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Using X-ray crystallography, we show that the CEACAM1 receptor-binding region of UspA1 unusually consists of an extended, rod-like left-handed trimeric coiled-coil. Mutagenesis and binding studies of UspA1 and the N-domain of CEACAM1 have been used to delineate the interacting surfaces between ligand and receptor and guide assembly of the complex. However, solution scattering, molecular modelling and electron microscopy analyses all indicate that significant bending of the UspA1 coiled-coil stalk also occurs. This explains how UspA1 can engage CEACAM1 at a site far distant from its head group, permitting closer proximity of the respective cell surfaces during infection
    corecore