235 research outputs found

    Comparison of 3-Dimensional and 1-Dimensional Schemes in the calculation of Atmospheric Neutrinos

    Get PDF
    A 3-dimensional calculation of atmospheric neutrinos flux is presented, and the results are compared with those of a 1-dimensional one. In this study, interaction and propagation of particles is treated in a 3-dimensional way including the curvature of charged particles due to the geomagnetic field, which is assumed to be a dipole field. The purpose of this paper is limited to the comparison of calculation schemes. The updated flux value with new interaction model and primary flux model will be reported in a separate paper. Except for nearly horizontal directions, the flux is very similar to the result of 1 dimensional calculations. However, for near-horizontal directions an enhancement of the neutrino flux is seen even at energies as high as 1 GeV. The production height of neutrinos is lower than the prediction by 1-dimensional calculation for near-horizontal directions, and is a little higher for near-vertical directions. However, the difference is not evident except for near-horizontal directions.Comment: 22 pages, 15figure

    Simulation of Atmospheric Muon and Neutrino Fluxes with CORSIKA

    Full text link
    The fluxes of atmospheric muons and neutrinos are calculated by a three dimensional Monte Carlo simulation with the air shower code CORSIKA using the hadronic interaction models DPMJET, VENUS, GHEISHA, and UrQMD. For the simulation of low energy primary particles the original CORSIKA has been extended by a parametrization of the solar modulation and a microscopic calculation of the directional dependence of the geomagnetic cut-off functions. An accurate description for the geography of the Earth has been included by a digital elevation model, tables for the local magnetic field in the atmosphere, and various atmospheric models for different geographic latitudes and annual seasons. CORSIKA is used to calculate atmospheric muon fluxes for different locations and the neutrino fluxes for Kamioka. The results of CORSIKA for the muon fluxes are verified by an extensive comparison with recent measurements. The obtained neutrino fluxes are compared with other calculations and the influence of the hadronic interaction model, the geomagnetic cut-off and the local magnetic field on the neutrino fluxes is investigated.Comment: revtex, 19 pages, 19 Postscript figures, submitted to Phys. Rev.

    Atmospheric neutrino flux from 3-dimensional simulation

    Full text link
    The atmospheric muon and neutrino flux have been simulated using the same approach which successfully accounted for the recent secondary proton, electron and positron flux measurements in orbit by the AMS experiment. For the muon flux, a good agreement is obtained with the CAPRICE and HEAT data for altitudes ranging from sea level up to about 38 km. The general features of the calculated atmospheric neutrino flux are reported and discussed. The flux obtained at the Super-Kamiokande experiment location are reported and compared with other calculations. For low neutrino energies the flux obtained is significantly smaller than that used in the data analysis of underground experiment. The simulation results for the SOUDAN experiment site are also reported.Comment: 33 pages, 27 figures, 12 tables, final version for Phys. Rev.

    Lepton Flavor Violation in Supersymmetric SO(10) Grand Unified Models

    Get PDF
    The study for lepton flavor violation combined with the neutrino oscillation may provide more information about the lepton flavor structure of the grand unified theory. In this paper, we study two lepton flavor violation processes, Ï„â†’ÎŒÎł\tau\to \mu\gamma and Z→τΌZ\to \tau\mu, in the context of supersymmetric SO(10) grand unified models. We find the two processes are both of phenomenological interest. In particular the latter may be important in some supersymmetric parameter space where the former is suppressed. Thus, Z-dacay may offer another chance for looking for lepton flavor violation.Comment: 26 pages, 10 figure

    Deviation of Neutrino Mixing from Bi-maximal

    Get PDF
    We have studied how observables of the neutrino mixing matrix can link up with the ones in the quark sector. The deviation from the bi-maximal flavor mixing is parameterized using a 3 x 3 unitary matrix. The neutrino mixings are investigated supposing this unitary matrix to be hierarchical like the quark mixing matrix. We obtain the remarkable prediction |U_{e3}| >= 0.03 from the experimentally allowed range tan^2 theta_{sol} = 0.24 ~ 0.89. The CP violation in neutrino oscillations is expected to be very small.Comment: Some references are adde
    • 

    corecore