1,611 research outputs found

    On the electromagnetic form factors of the proton from generalized Skyrme models

    Full text link
    We compare the prediction of Skyrme-like effective Lagrangians with data for electromagnetic form factors of proton and consider the possibility of fixing the parameters of these higher-order Lagrangians. Our results indicate that one or two-parameter models can lead to better agreement with the data but more accurate determination of the effective Lagragian faces theoretical uncertainties.Comment: 8 pages, 2 figures, revte

    Astronomical spectrograph calibration with broad-spectrum frequency combs

    Full text link
    Broadband femtosecond-laser frequency combs are filtered to spectrographically resolvable frequency-mode spacing, and the limitations of using cavities for spectral filtering are considered. Data and theory are used to show implications to spectrographic calibration of high-resolution, astronomical spectrometers

    Measurement of excited-state transitions in cold calcium atoms by direct femtosecond frequency-comb spectroscopy

    Get PDF
    We apply direct frequency-comb spectroscopy, in combination with precision cw spectroscopy, to measure the 4s4p3P14s5s3S1{\rm 4s4p} ^3P_1 \to {\rm 4s5s} ^3S_1 transition frequency in cold calcium atoms. A 657 nm ultrastable cw laser was used to excite atoms on the narrow (γ400\gamma \sim 400 Hz) 4s21S04s4p3P1{\rm 4s^2} ^1S_0 \to {\rm 4s4p} ^3P_1 clock transition, and the direct output of the frequency comb was used to excite those atoms from the 4s4p3P1{\rm 4s4p} ^3P_1 state to the 4s5s3S1{\rm 4s5s} ^3S_1 state. The resonance of this second stage was detected by observing a decrease in population of the ground state as a result of atoms being optically pumped to the metastable 4s4p3P0,2{\rm 4s4p} ^3P_{0,2} states. The 4s4p3P14s5s3S1{\rm 4s4p} ^3P_1 \to {\rm 4s5s} ^3S_1 transition frequency is measured to be ν=489544285713(56)\nu = 489 544 285 713(56) kHz; which is an improvement by almost four orders of magnitude over the previously measured value. In addition, we demonstrate spectroscopy on magnetically trapped atoms in the 4s4p3P2{\rm 4s4p} ^3P_2 state.Comment: 4 pages 5 figure

    Efficient 1 GHz Ti:sapphire laser with improved broadband continuum in the infrared

    Get PDF
    We demonstrate a 1 GHz prismless femtosecond Ti:sapphire ring laser which emits 890 mW for 7.6W of pump power over a continuum extending from 585 to 1200 nm at -20 dB below the maximum. A broadband continuum is obtained without careful mirror dispersion compensation, with the net cavity group-delay-dispersion having -50 to +100 fs2 oscillations from 700 to 900 nm. Further broadening is obtained by use of a slightly convex cavity mirror that increases self-phase modulation. 17% (75%) of the intracavity (output) power is generated in single-pass through the crystal, outside the cavity bandwidth and concentrated in the low gain infrared region from 960 to 1200 nm. This laser seems well suited for optical frequency metrology, possibly allowing easier stabilization of the carrier-to-envelope offset frequency without use of photonic fibers

    Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb

    Get PDF
    We have performed sub-Doppler spectroscopy on the narrow intercombination line of cold calcium atoms using the amplified output of a femtosecond laser frequency comb. Injection locking of a 657-nm diode laser with a femtosecond comb allows for two regimes of amplification, one in which many lines of the comb are amplified, and one where a single line is predominantly amplified. The output of the laser in both regimes was used to perform kilohertz-level spectroscopy. This experiment demonstrates the potential for high-resolution absolute-frequency spectroscopy over the entire spectrum of the frequency comb output using a single high-finesse optical reference cavity.Comment: 4 pages, 4 Figure

    Observation and absolute frequency measurements of the 1S0 - 3P0 optical clock transition in ytterbium

    Full text link
    We report the direct excitation of the highly forbidden (6s^2) 1S0 - (6s6p) 3P0 optical transition in two odd isotopes of ytterbium. As the excitation laser frequency is scanned, absorption is detected by monitoring the depletion from an atomic cloud at ~70 uK in a magneto-optical trap. The measured frequency in 171Yb (F=1/2) is 518,295,836,593.2 +/- 4.4 kHz. The measured frequency in 173Yb (F=5/2) is 518,294,576,850.0 +/- 4.4 kHz. Measurements are made with a femtosecond-laser frequency comb calibrated by the NIST cesium fountain clock and represent nearly a million-fold reduction in uncertainty. The natural linewidth of these J=0 to J=0 transitions is calculated to be ~10 mHz, making them well-suited to support a new generation of optical atomic clocks based on confinement in an optical lattice.Comment: 4 pages, 3 figure

    Optical Lattice Induced Light Shifts in an Yb Atomic Clock

    Get PDF
    We present an experimental study of the lattice induced light shifts on the 1S_0-3P_0 optical clock transition (v_clock~518 THz) in neutral ytterbium. The ``magic'' frequency, v_magic, for the 174Yb isotope was determined to be 394 799 475(35)MHz, which leads to a first order light shift uncertainty of 0.38 Hz on the 518 THz clock transition. Also investigated were the hyperpolarizability shifts due to the nearby 6s6p 3P_0 - 6s8p 3P_0, 6s8p 3P_2, and 6s5f 3F_2 two-photon resonances at 759.708 nm, 754.23 nm, and 764.95 nm respectively. By tuning the lattice frequency over the two-photon resonances and measuring the corresponding clock transition shifts, the hyperpolarizability shift was estimated to be 170(33) mHz for a linear polarized, 50 uK deep, lattice at the magic wavelength. In addition, we have confirmed that a circularly polarized lattice eliminates the J=0 - J=0 two-photon resonance. These results indicate that the differential polarizability and hyperpolarizability frequency shift uncertainties in a Yb lattice clock could be held to well below 10^-17.Comment: Accepted to PR

    Enhancing Key Digital Literacy Skills: Information Privacy, Information Security, and Copyright/Intellectual Property

    Get PDF
    Key Messages Background Knowledge and skills in the areas of information security, information privacy, and copyright/intellectual property rights and protection are of key importance for organizational and individual success in an evolving society and labour market in which information is a core resource. Organizations require skilled and knowledgeable professionals who understand risks and responsibilities related to the management of information privacy, information security, and copyright/intellectual property. Professionals with this expertise can assist organizations to ensure that they and their employees meet requirements for the privacy and security of information in their care and control, and in order to ensure that neither the organization nor its employees contravene copyright provisions in their use of information. Failure to meet any of these responsibilities can expose the organization to reputational harm, legal action and/or financial loss. Context Inadequate or inappropriate information management practices of individual employees are at the root of organizational vulnerabilities with respect to information privacy, information security, and information ownership issues. Users demonstrate inadequate skills and knowledge coupled with inappropriate practices in these areas, and similar gaps at the organizational level are also widely documented. National and international regulatory frameworks governing information privacy, information security, and copyright/intellectual property are complex and in constant flux, placing additional burden on organizations to keep abreast of relevant regulatory and legal responsibilities. Governance and risk management related to information privacy, security, and ownership are critical to many job categories, including the emerging areas of information and knowledge management. There is an increasing need for skilled and knowledgeable individuals to fill organizational roles related to information management, with particular growth in these areas within the past 10 years. Our analysis of current job postings in Ontario supports the demand for skills and knowledge in these areas. Key Competencies We have developed a set of key competencies across a range of areas that responds to these needs by providing a blueprint for the training of information managers prepared for leadership and strategic positions. These competencies are identified in the full report. Competency areas include: conceptual foundations risk assessment tools and techniques for threat responses communications contract negotiation and compliance evaluation and assessment human resources management organizational knowledge management planning; policy awareness and compliance policy development project managemen

    Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein Condensates

    Full text link
    We measure spin mixing of F=1 and F=2 spinor condensates of 87Rb atoms confined in an optical trap. We determine the spin mixing time to be typically less than 600 ms and observe spin population oscillations. The equilibrium spin configuration in the F=1 manifold is measured for different magnetic fields and found to show ferromagnetic behavior for low field gradients. An F=2 condensate is created by microwave excitation from F=1 manifold, and this spin-2 condensate is observed to decay exponentially with time constant 250 ms. Despite the short lifetime in the F=2 manifold, spin mixing of the condensate is observed within 50 ms.Comment: 4 pages, 6 figure
    corecore