254 research outputs found

    On the formation of Hubble flow in Little Bangs

    Full text link
    A dynamical appearance of scaling solutions in the relativistic hydrodynamics applied to describe ultra-relativistic heavy-ion collisions is studied. We consider the boost-invariant cylindrically symmetric systems and the effects of the phase transition are taken into account by using a temperature dependent sound velocity inferred from the lattice simulations of QCD. We find that the transverse flow acquires the scaling form r/t within the short evolution times, 10 - 15 fm, only if the initial transverse flow originating from the pre-equilibrium collective behavior is present at the initial stage of the hydrodynamic evolution. The amount of such pre-equilibrium flow is correlated with the initial pressure gradient; larger gradients require smaller initial flow. The results of the numerical calculations support the phenomenological parameterizations used in the Blast-Wave, Buda-Lund, and Cracow models of the freeze-out process.Comment: 11 page

    Oscillations of the static meson fields at finite baryon density

    Get PDF
    The spatial dependence of static meson correlation functions at finite baryon density is studied in the Nambu -- Jona - Lasinio model. In contrast to the finite temperature case, we find that the correlation functions at finite density are not screened but exhibit long-range oscillations. The observed phenomenon is analogous to the Friedel oscillations in a degenerate electron gas

    Initial condition for hydrodynamics, partonic free streaming, and the uniform description of soft observables at RHIC

    Full text link
    We investigate the role of the initial condition used for the hydrodynamic evolution of the system formed in ultra-relativistic heavy-ion collisions and find that an appropriate choice motivated by the models of early-stage dynamics, specifically a simple two-dimensional Gaussian profile, leads to a uniform description of soft observables measured in the Relativistic Heavy-Ion Collider (RHIC). In particular, the transverse-momentum spectra, the elliptic-flow, and the Hanbury-Brown--Twiss correlation radii, including the ratio R_out/R_side as well as the dependence of the radii on the azimuthal angle (azHBT), are properly described. We use the perfect-fluid hydrodynamics with a realistic equation of state based on lattice calculations and the hadronic gas at high and low temperatures, respectively. We also show that the inclusion of the partonic free-streaming in the early stage allows to delay the start of the hydrodynamical description to comfortable times of the order of 1 fm/c. Free streaming broadens the initial energy-density profile, but generates the initial transverse and elliptic flow. The data may be described equally well when the hydrodynamics is started early, or with a delay due to partonic free-streaming.Comment: 4 pages, 4 figure

    Temperature dependent sound velocity in hydrodynamic equations for relativistic heavy-ion collisions

    Full text link
    We analyze the effects of different forms of the sound-velocity function cs(T) on the hydrodynamic evolution of matter formed in the central region of relativistic heavy-ion collisions. At high temperatures (above the critical temperature Tc) the sound velocity is calculated from the recent lattice simulations of QCD, while in the low temperature region it is obtained from the hadron gas model. In the intermediate region we use different interpolations characterized by the values of the sound velocity at the local maximum (at T = 0.4 Tc) and local minimum (at T = Tc). In all considered cases the temperature dependent sound velocity functions yield the entropy density, which is consistent with the lattice QCD simulations at high temperature. Our calculations show that the presence of a distinct minimum of the sound velocity leads to a very long (about 20 fm/c) evolution time of the system, which is not compatible with the recent estimates based on the HBT interferometry. Hence, we conclude that the hydrodynamic description is favored in the case where the cross-over phase transition renders the smooth sound velocity function with a possible shallow minimum at Tc.Comment: 6 pages, 3 figures, talk given at SQM'07 Levoca, Slovaki

    A Fast Hadron Freeze-out Generator

    Get PDF
    We have developed a fast Monte Carlo procedure of hadron generation allowing one to study and analyze various observables for stable hadrons and hadron resonances produced in ultra-relativistic heavy ion collisions. Particle multiplicities are determined based on the concept of chemical freeze-out. Particles can be generated on the chemical or thermal freeze-out hypersurface represented by a parameterization or a numerical solution of relativistic hydrodynamics with given initial conditions and equation of state. Besides standard space-like sectors associated with the volume decay, the hypersurface may also include non-space-like sectors related to the emission from the surface of expanding system. For comparison with other models and experimental data we demonstrate the results based on the standard parameterizations of the hadron freeze-out hypersurface and flow velocity profile under the assumption of a common chemical and thermal freeze-out. The C++ generator code is written under the ROOT framework and is available for public use at http://uhkm.jinr.ru/.Comment: 28 pages,7 figure

    Buda-Lund hydro model for ellipsoidally symmetric fireballs and the elliptic flow at RHIC

    Get PDF
    The ellipsoidally symmetric extension of Buda-Lund hydrodynamic model is shown here to yield a natural description of the pseudorapidity dependence of the elliptic flow v2(η)v_2(\eta), as determined recently by the PHOBOS experiment for Au+Au collisions at sNN=130\sqrt{s_{NN}} = 130 and 200 GeV. With the same set of parameters, the Buda-Lund model describes also the transverse momentum dependence of v2v_2 of identified particles at mid-rapidity. The results confirm the indication for quark deconfinement in Au+Au collisions at RHIC, obtained from a successful Buda-Lund hydro model fit to the single particle spectra and two-particle correlation data, as measured by the BRAHMS, PHOBOS, PHENIX and STAR collaborations.Comment: 16 pages, 2 figures, 1 table added, discussion extended and an important misprint in the caption of Fig. 1 is correcte

    Quark Potential in a Quark-Meson Plasma

    Full text link
    We investigate quark potential by considering meson exchanges in the two flavor Nambu--Jona-Lasinio model at finite temperature and density. There are two kinds of oscillations in the chiral restoration phase, one is the Friedel oscillation due to the sharp quark Fermi surface at high density, and the other is the Yukawa oscillation driven by the complex meson poles at high temperature. The quark-meson plasma is strongly coupled in the temperature region 1≤T/Tc≲31\le T/T_c \lesssim 3 with TcT_c being the critical temperature of chiral phase transition. The maximum coupling in this region is located at the critical point.Comment: 8 pages and 8 figure

    Thermal analysis of production of resonances in relativistic heavy-ion collisions

    Full text link
    Production of resonances is considered in the framework of the single-freeze-out model of ultra-relativistic heavy ion collisions. The formalism involves the virial expansion, where the probability to form a resonance in a two-body channel is proportional to the derivative of the phase-shift with respect to the invariant mass. The thermal model incorporates longitudinal and transverse flow, as well as kinematic cuts of the STAR experiment at RHIC. We find that the shape of the pi+ pi- spectral line qualitatively reproduces the preliminary experimental data when the position of the rho peak is lowered. This confirms the need to include the medium effects in the description of the RHIC data. We also analyze the transverse-momentum spectra of rho, K*(892), and f_0(980), and find that the slopes agree with the observed values. Predictions are made for eta, eta', omega, phi, Lambda(1520), and Sigma(1385).Comment: minor modifications, a reference adde

    Chiral symmetry breaking in hot matter

    Full text link
    This series of three lectures covers (a) a basic introduction to symmetry breaking in general and chiral symmetry breaking in QCD, (b) an overview of the present status of lattice data and the knowlegde that we have at finite temperature from chiral perturbation theory. (c) Results obtained from the Nambu--Jona-Lasinio model describing static mesonic properties are discussed as well as the bulk thermodynamic quantities. Divergences that are observed in the elastic quark-antiquark scattering cross-section, reminiscent of the phenomenon of critical opalescence in light scattering, is also discussed. (d) Finally, we deal with the realm of systems out of equilibrium, and examine the effects of a medium dependent condensate in a system of interacting quarks.Comment: 62 LaTex pages, incorporating 23 figures. Lectures given at the eleventh Chris-Engelbrecht Summer School in Theoretical Physics, 4-13 February, 1998, to be published by Springer Verla
    • …
    corecore