138 research outputs found

    Sleep scoring made easy Semi-automated sleep analysis software and manual rescoring tools for basic sleep research in mice

    No full text
    Studying sleep behavior in animal models demands clear separation of vigilance states. Pure manual scoring is time-consuming and commercial scoring software is costly. We present a LabVIEW-based, semi-automated scoring routine using recorded EEG and EMG signals. This scoring routine is • designed to reliably assign the vigilance/sleep states wakefulness (WAKE), non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) to defined EEG/EMG episodes. • straightforward to use even for beginners in the field of sleep research. • freely available upon request. Chronic recordings from mice were used to design and evaluate the scoring routine consisting of an artifact-removal, a scoring- and a rescoring routine. The scoring routine processes EMG and different EEG frequency bands. Amplitude-based thresholds for EEG and EMG parameters trigger a decision tree assigning each EEG episode to a defined vigilance/sleep state automatically. Using the rescoring routine individual episodes or particular state transitions can be re-evaluated manually. High agreements between auto-scored and manual sleep scoring could be shown for experienced scorers and for beginners quickly and reliably. With small modifications to the software, it can be easily adapted for sleep analysis in other animal models

    Prognostic and symptomatic aspects of rapid eye movement sleep in a mouse model of posttraumatic stress disorder

    Get PDF
    Not every individual develops Posttraumatic Stress Disorder (PTSD) after the exposure to a potentially traumatic event. Therefore, the identification of pre-existing risk factors and early diagnostic biomarkers is of high medical relevance. However, no objective biomarker has yet progressed into clinical practice. Sleep disturbances represent commonly reported complaints in PTSD patients. In particular, changes in rapid eye movement sleep (REMS) properties are frequently observed in PTSD patients. Here, we examined in a mouse model of PTSD whether (1) mice developed REMS alterations after trauma and (2) whether REMS architecture before and/or shortly after trauma predicted the development of PTSD-like symptoms. We monitored sleep-wake behavior via combined electroencephalogram/electromyogram recordings immediately before (24 h pre), immediately after (0–48 h post) and 2 months after exposure to an electric foot shock in male C57BL/6N mice (n = 15). PTSD-like symptoms, including hyperarousal, contextual, and generalized fear, were assessed 1 month post-trauma. Shocked mice showed early onset and sustained elevation of REMS compared to non-shocked controls. In addition, REMS architecture before trauma was correlated with the intensity of acoustic startle responses, but not contextual fear, 1 month after trauma. Our data suggest REMS as prognostic (pre-trauma) and symptomatic (post-trauma) marker of PTSD-like symptoms in mice. Translated to the situation in humans, REMS may constitute a viable, objective, and non-invasive biomarker in PTSD and other trauma-related psychiatric disorders, which could guide pharmacological interventions in humans at high risk

    PathOrganic – Risks and Recommendations Regarding Human Pathogens in Organic Vegetable Production Chains

    Get PDF
    PathOrganic assesses risks associated with the consumption of fresh and minimally processed vegetables due to the prevalence of bacterial human pathogens in plant produce. The project evaluates whether organic production poses a risk on food safety, taking into consideration sources of pathogen transmission (e.g. animal manure). The project also explores whether organic versus conventional production practices may reduce the risk of pathogen manifestation. In Europe, vegetable-linked outbreaks are not well investigated. A conceptual model together with novel sampling strategies and specifically adjusted methods provides the basis for large-scale surveys of organically grown plant produce in five European countries. Critical control points are determined and evaluated and factors contributing to a food safety problem are analyzed in greenhouse and field experiments. The project aims at developing a quantitative risk assessment model and at formulating recommendations for improving food safety in organic vegetable production

    Interfacial Tensions near Critical Endpoints: Experimental Checks of EdGF Theory

    Full text link
    Predictions of the extended de Gennes-Fisher local-functional theory for the universal scaling functions of interfacial tensions near critical endpoints are compared with experimental data. Various observations of the binary mixture isobutyric acid ++ water are correlated to facilitate an analysis of the experiments of Nagarajan, Webb and Widom who observed the vapor-liquid interfacial tension as a function of {\it both} temperature and density. Antonow's rule is confirmed and, with the aid of previously studied {\it universal amplitude ratios}, the crucial analytic ``background'' contribution to the surface tension near the endpoint is estimated. The residual singular behavior thus uncovered is consistent with the theoretical scaling predictions and confirms the expected lack of symmetry in (TTc)(T-T_c). A searching test of theory, however, demands more precise and extensive experiments; furthermore, the analysis highlights, a previously noted but surprising, three-fold discrepancy in the magnitude of the surface tension of isobutyric acid ++ water relative to other systems.Comment: 6 figure

    Projections from the paralemniscal nucleus to the spinal cord in the mouse

    Get PDF
    The present study investigated the projection from the paralemniscal nucleus (PL) to the spinal cord in the mouse by injecting the retrograde tracer fluoro-gold to different levels of the spinal cord and injecting the anterograde tracer biotinylated dextran amine into PL. We found that PL projects to the entire spinal cord with obvious contralateral predominance—420 neurons projected to the contralateral cervical cord and 270 to the contralateral lumbar cord. Fibers from PL descended in the dorsolateral funiculus on the contralateral side and terminated in laminae 5, 6, 7, and to a lesser extent in the dorsal and ventral horns. A smaller number of fibers also descended in the ventral funiculus on the ipsilateral side and terminated in laminae 7, 8 and, to a lesser extent in lamina 9. The present study is the first demonstration of the PL fiber termination in the spinal cord in mammals. The PL projection to the spinal cord may be involved in vocalization and locomotion

    Directional wetting in anisotropic inverse opals

    Get PDF
    Porous materials display interesting transport phenomena due to the restricted motion of fluids within the nano- to micro-scale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy

    Ultra-fast responsive colloidal-polymer composite-based volatile organic compounds (VOC) sensor using nanoscale easy tear process

    Get PDF
    There is an immense need for developing a simple, rapid, and inexpensive detection assay for health-care applications or monitoring environments. To address this need, a photonic crystal (PC)-based sensor has been extensively studied due to its numerous advantages such as colorimetric measurement, high sensitivity, and low cost. However, the response time of a typical PC-based sensor is relatively slow due to the presence of the inevitable upper residual layer in colloidal structures. Hence, we propose an ultra-fast responsive PC-based volatile organic compound (VOC) sensor by using a "nanoscale easy tear (NET) process" inspired by commercially available "easy tear package". A colloidal crystal-polydimethylsiloxane (PDMS) composite can be successfully realized through nanoscale tear propagation along the interface between the outer surface of crystallized nanoparticles and bulk PDMS. The response time for VOC detection exhibits a significant decrease by allowing the direct contact with VOCs, because of perfect removal of the residual on the colloidal crystals. Moreover, vapor-phase VOCs can be monitored, which had been previously impossible. High-throughput production of the patterned colloidal crystal-polymer composite through the NET process can be applied to other multiplexed selective sensing applications or may be used for nanomolding templates

    Nesfatin-1/NUCB2 as a Potential New Element of Sleep Regulation in Rats.

    Get PDF
    STUDY OBJECTIVES: Millions suffer from sleep disorders that often accompany severe illnesses such as major depression; a leading psychiatric disorder characterized by appetite and rapid eye movement sleep (REMS) abnormalities. Melanin-concentrating hormone (MCH) and nesfatin-1/NUCB2 (nesfatin) are strongly co - expressed in the hypothalamus and are involved both in food intake regulation and depression. Since MCH was recognized earlier as a hypnogenic factor, we analyzed the potential role of nesfatin on vigilance. DESIGN: We subjected rats to a 72 h-long REMS deprivation using the classic flower pot method, followed by a 3 h-long 'rebound sleep'. Nesfatin mRNA and protein expressions as well as neuronal activity (Fos) were measured by quantitative in situ hybridization technique, ELISA and immunohistochemistry, respectively, in 'deprived' and 'rebound' groups, relative to controls sacrificed at the same time. We also analyzed electroencephalogram of rats treated by intracerebroventricularly administered nesfatin-1, or saline. RESULTS: REMS deprivation downregulated the expression of nesfatin (mRNA and protein), however, enhanced REMS during 'rebound' reversed this to control levels. Additionally, increased transcriptional activity (Fos) was demonstrated in nesfatin neurons during 'rebound'. Centrally administered nesfatin-1 at light on reduced REMS and intermediate stage of sleep, while increased passive wake for several hours and also caused a short-term increase in light slow wave sleep. CONCLUSIONS: The data designate nesfatin as a potential new factor in sleep regulation, which fact can also be relevant in the better understanding of the role of nesfatin in the pathomechanism of depression

    Rhythmicity in Mice Selected for Extremes in Stress Reactivity: Behavioural, Endocrine and Sleep Changes Resembling Endophenotypes of Major Depression

    Get PDF
    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called 'stress reactivity' (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors.In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice.Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new targets for antidepressant drugs tailored to match specific pathologies within MD

    Sleep disturbances in highly stress reactive mice: Modeling endophenotypes of major depression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuronal mechanisms underlying affective disorders such as major depression (MD) are still poorly understood. By selectively breeding mice for high (HR), intermediate (IR), or low (LR) reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis, we recently established a new genetic animal model of extremes in stress reactivity (SR). Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS) and non-REM sleep (NREMS) as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG) parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG) electrodes. After recovery, EEG and EMG recordings were performed for two days.</p> <p>Results</p> <p>Differences in the amount of REMS and wakefulness and in the number of transitions between vigilance states were found in HR mice, when compared with IR and LR animals. Increased frequencies of transitions from NREMS to REMS and from REMS to wakefulness in HR animals were robust across the light-dark cycle. Detailed statistical analyses of spectral EEG parameters showed that especially during NREMS the power of the theta (6-9 Hz), alpha (10-15 Hz) and eta (16-22.75 Hz) bands was significantly different between the three breeding lines. Well defined distributions of significant power differences could be assigned to different times during the light and the dark phase. Especially during NREMS, group differences were robust and could be continuously monitored across the light-dark cycle.</p> <p>Conclusions</p> <p>The HR mice, i.e. those animals that have a genetic predisposition to hyper-activating their HPA axis in response to stressors, showed disturbed patterns in sleep architecture, similar to what is known from depressed patients. Significant alterations in several frequency bands of the EEG, which also seem to at least partly mimic clinical observations, suggest the SR mouse lines as a promising animal model for basic research of mechanisms underlying sleep impairments in MD.</p
    corecore