1,918 research outputs found

    Financing Africa: Through the crisis and beyond.

    Get PDF
    [Dataset available: http://hdl.handle.net/10411/17679]

    Hands-On Universe: A Global Program for Education and Public Outreach in Astronomy

    Get PDF
    Hands-On Universe (HOU) is an educational program that enables students to investigate the Universe while applying tools and concepts from science, math, and technology. Using the Internet, HOU participants around the world request observations from an automated telescope, download images from a large image archive, and analyze them with the aid of user-friendly image processing software. This program is developing now in many countries, including the USA, France, Germany, Sweden, Japan, Australia, and others. A network of telescopes has been established among these countries, many of them remotely operated, as shown in the accompanying demo. Using this feature, students in the classroom are able to make night observations during the day, using a telescope placed in another country. An archive of images taken on large telescopes is also accessible, as well as resources for teachers. Students are also dealing with real research projects, e.g. the search for asteroids, which resulted in the discovery of a Kuiper Belt object by high-school students. Not only Hands-On Universe gives the general public an access to professional astronomy, but it is also a more general tool to demonstrate the use of a complex automated system, the techniques of data processing and automation. Last but not least, through the use of telescopes located in many countries over the globe, a form of powerful and genuine cooperation between teachers and children from various countries is promoted, with a clear educational goal.Comment: 4 pages, 1 figure, to appear in the proceedings of the ADASS X conference, Boston, October 2000, ASP conf. pro

    Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description

    Full text link
    The gravitational-wave signal from inspiralling neutron-star--neutron-star (or black-hole--neutron-star) binaries will be influenced by tidal coupling in the system. An important science goal in the gravitational-wave detection of these systems is to obtain information about the equation of state of neutron star matter via the measurement of the tidal polarizability parameters of neutron stars. To extract this piece of information will require to have accurate analytical descriptions of both the motion and the radiation of tidally interacting binaries. We improve the analytical description of the late inspiral dynamics by computing the next-to-next-to-leading order relativistic correction to the tidal interaction energy. Our calculation is based on an effective-action approach to tidal interactions, and on its transcription within the effective-one-body formalism. We find that second-order relativistic effects (quadratic in the relativistic gravitational potential u=G(m1+m2)/(c2r)u=G(m_1 +m_2)/(c^2 r)) significantly increase the effective tidal polarizability of neutron stars by a distance-dependent amplification factor of the form 1+α1u+α2u2+...1 + \alpha_1 \, u + \alpha_2 \, u^2 +... where, say for an equal-mass binary, α1=5/4=1.25\alpha_1=5/4=1.25 (as previously known) and α2=85/146.07143\alpha_2=85/14\simeq6.07143 (as determined here for the first time). We argue that higher-order relativistic effects will lead to further amplification, and we suggest a Pad\'e-type way of resumming them. We recommend to test our results by comparing resolution-extrapolated numerical simulations of inspiralling-binary neutron stars to their effective one body description.Comment: 29 pages, Physical Review D, to appea

    Assessing the Sensitivity of the Non-Hydrostatic Regional Climate Model to Boundary Conditions and Convective Schemes over the Philippines

    Get PDF
    Regional climate models have been useful in climate studies and in downscaling climate projections from global climate models, especially for areas characterized by complex topography and coastline features, such as the Philippines. However, several factors may affect model skill, such as uncertainties related to the boundary conditions and model configuration. This study evaluates the performance of the non-hydrostatic regional climate model (NHRCM) over the Philippines. Present-day climate simulations at 50 km resolution are conducted using two sets of boundary conditions (ECMWF ERA-Interim and the NCEP/NCAR Reanalysis Project NNRP1), as well as two convective parameterization schemes in the model (Grell and Kain-Fritsch). Results show that the seasonal changes in the spatial distribution of temperature, rainfall, and winds over the Philippines are simulated reasonably well. NHRCM has an overall cold and dry bias over land, the degree of which depends on the boundary condition and the convective scheme used. After adjusting the simulated temperature because of the difference in topography, the temperature differs from that observed by -0.90°C to -0.42°C on average. The rainfall bias in NHRCM ranges from -62.13 % to -25.20 %. Regardless of the boundary condition, the Grell scheme results in the lowest temperature bias with high skill scores, while the Kain-Fritsch scheme gives the lowest rainfall bias with high correlation and skill scores. The boundary conditions also influence model skill, such that the model bias is lower for temperature when ERA-Interim is used, but lower for rainfall with NNRP1. NHRCM represents the seasonal cycles of temperature and rainfall for all regions, but tends to generate more occurrences of cold and dry months. Improvements in the model are still possible, but these results indicate the potential of the model to be used for providing essential information for describing historical and future changes in the Philippine climate

    Novelty Induces Behavioural And Glucocorticoid Responses In A Songbird Artificially Selected For Divergent Personalities

    Get PDF
    Stress physiology is thought to contribute to individual differences in behaviour. In part this reflects the fact that canonical personality measures consist of responses to challenges, including novel objects and environments. Exposure to novelty is typically assumed to induce a moderate increase in glucocorticoids (CORT), although this has rarely been tested. We tested this assumption using great tits, Parus major, selected for divergent personalities (bold-fast and shy-slow explorers), predicting that the shy birds would exhibit higher CORT following exposure to a novel object. We also scored behavioural responses to the novel object, predicting that bold birds would more frequently approach the novel object and exhibit more abnormal repetitive behaviours. We found that the presence of a novel object did induce a moderate CORT response, but selection lines did not differ in the magnitude of this response. Furthermore, although both selection lines showed a robust CORT elevation to a subsequent restraint stressor, the CORT response was stronger in bold birds and this effect was specific to novel object exposure. Shy birds showed a strong positive phenotypic correlation between CORT concentrations following the novel object exposure and the subsequent restraint stress. Behaviourally, the selection lines differed in their response during novel object exposure: as predicted, bold birds more frequently approached the novel object and shy birds more strongly decreased overall locomotion during the novel object trial, but birds from both selection lines showed significant and similar frequencies of abnormal repetitive behaviours during novel object exposure. Our findings support the hypothesis that personality emerges as a result of correlated selection on behaviour and underlying endocrine mechanisms and suggest that the relationship between endocrine stress physiology and personality is context dependent
    corecore