104 research outputs found

    The Palomar Testbed Interferometer Calibrator Catalog

    Get PDF
    The Palomar Testbed Interferometer (PTI) archive of observations between 1998 and 2005 is examined for objects appropriate for calibration of optical long-baseline interferometer observations - stars that are predictably point-like and single. Approximately 1,400 nights of data on 1,800 objects were examined for this investigation. We compare those observations to an intensively studied object that is a suitable calibrator, HD217014, and statistically compare each candidate calibrator to that object by computing both a Mahalanobis distance and a Principal Component Analysis. Our hypothesis is that the frequency distribution of visibility data associated with calibrator stars differs from non-calibrator stars such as binary stars. Spectroscopic binaries resolved by PTI, objects known to be unsuitable for calibrator use, are similarly tested to establish detection limits of this approach. From this investigation, we find more than 350 observed stars suitable for use as calibrators (with an additional 140\approx 140 being rejected), corresponding to 95\gtrsim 95% sky coverage for PTI. This approach is noteworthy in that it rigorously establishes calibration sources through a traceable, empirical methodology, leveraging the predictions of spectral energy distribution modeling but also verifying it with the rich body of PTI's on-sky observations.Comment: 100 pages, 7 figures, 7 tables; to appear in the May 2008ApJS, v176n

    synaptojanin1 Is Required for Temporal Fidelity of Synaptic Transmission in Hair Cells

    Get PDF
    To faithfully encode mechanosensory information, auditory/vestibular hair cells utilize graded synaptic vesicle (SV) release at specialized ribbon synapses. The molecular basis of SV release and consequent recycling of membrane in hair cells has not been fully explored. Here, we report that comet, a gene identified in an ENU mutagenesis screen for zebrafish larvae with vestibular defects, encodes the lipid phosphatase Synaptojanin 1 (Synj1). Examination of mutant synj1 hair cells revealed basal blebbing near ribbons that was dependent on Cav1.3 calcium channel activity but not mechanotransduction. Synaptojanin has been previously implicated in SV recycling; therefore, we tested synaptic transmission at hair-cell synapses. Recordings of post-synaptic activity in synj1 mutants showed relatively normal spike rates when hair cells were mechanically stimulated for a short period of time at 20 Hz. In contrast, a sharp decline in the rate of firing occurred during prolonged stimulation at 20 Hz or stimulation at a higher frequency of 60 Hz. The decline in spike rate suggested that fewer vesicles were available for release. Consistent with this result, we observed that stimulated mutant hair cells had decreased numbers of tethered and reserve-pool vesicles in comparison to wild-type hair cells. Furthermore, stimulation at 60 Hz impaired phase locking of the postsynaptic activity to the mechanical stimulus. Following prolonged stimulation at 60 Hz, we also found that mutant synj1 hair cells displayed a striking delay in the recovery of spontaneous activity. Collectively, the data suggest that Synj1 is critical for retrieval of membrane in order to maintain the quantity, timing of fusion, and spontaneous release properties of SVs at hair-cell ribbon synapses

    The Policy Dystopia Model:an interpretive analysis of tobacco industry political activity

    Get PDF
    BACKGROUND: Tobacco industry interference has been identified as the greatest obstacle to the implementation of evidence-based measures to reduce tobacco use. Understanding and addressing industry interference in public health policy-making is therefore crucial. Existing conceptualisations of corporate political activity (CPA) are embedded in a business perspective and do not attend to CPA's social and public health costs; most have not drawn on the unique resource represented by internal tobacco industry documents. Building on this literature, including systematic reviews, we develop a critically informed conceptual model of tobacco industry political activity. METHODS AND FINDINGS: We thematically analysed published papers included in two systematic reviews examining tobacco industry influence on taxation and marketing of tobacco; we included 45 of 46 papers in the former category and 20 of 48 papers in the latter (n = 65). We used a grounded theory approach to build taxonomies of "discursive" (argument-based) and "instrumental" (action-based) industry strategies and from these devised the Policy Dystopia Model, which shows that the industry, working through different constituencies, constructs a metanarrative to argue that proposed policies will lead to a dysfunctional future of policy failure and widely dispersed adverse social and economic consequences. Simultaneously, it uses diverse, interlocking insider and outsider instrumental strategies to disseminate this narrative and enhance its persuasiveness in order to secure its preferred policy outcomes. Limitations are that many papers were historical (some dating back to the 1970s) and focused on high-income regions. CONCLUSIONS: The model provides an evidence-based, accessible way of understanding diverse corporate political strategies. It should enable public health actors and officials to preempt these strategies and develop realistic assessments of the industry's claims

    Effect of Anthropogenic Landscape Features on Population Genetic Differentiation of Przewalski's Gazelle: Main Role of Human Settlement

    Get PDF
    Anthropogenic landscapes influence evolutionary processes such as population genetic differentiation, however, not every type of landscape features exert the same effect on a species, hence it is necessary to estimate their relative effect for species management and conservation. Przewalski's gazelle (Procapra przewalskii), which inhabits a human-altered area on Qinghai-Tibet Plateau, is one of the most endangered antelope species in the world. Here, we report a landscape genetic study on Przewalski's gazelle. We used skin and fecal samples of 169 wild gazelles collected from nine populations and thirteen microsatellite markers to assess the genetic effect of anthropogenic landscape features on this species. For comparison, the genetic effect of geographical distance and topography were also evaluated. We found significant genetic differentiation, six genetic groups and restricted dispersal pattern in Przewalski's gazelle. Topography, human settlement and road appear to be responsible for observed genetic differentiation as they were significantly correlated with both genetic distance measures [FST/(1−FST) and F′ST/(1−F′ST)] in Mantel tests. IBD (isolation by distance) was also inferred as a significant factor in Mantel tests when genetic distance was measured as FST/(1−FST). However, using partial Mantel tests, AICc calculations, causal modeling and AMOVA analysis, we found that human settlement was the main factor shaping current genetic differentiation among those tested. Altogether, our results reveal the relative influence of geographical distance, topography and three anthropogenic landscape-type on population genetic differentiation of Przewalski's gazelle and provide useful information for conservation measures on this endangered species

    The Effects of Governmental Protected Areas and Social Initiatives for Land Protection on the Conservation of Mexican Amphibians

    Get PDF
    Traditionally, biodiversity conservation gap analyses have been focused on governmental protected areas (PAs). However, an increasing number of social initiatives in conservation (SICs) are promoting a new perspective for analysis. SICs include all of the efforts that society implements to conserve biodiversity, such as land protection, from private reserves to community zoning plans some of which have generated community-protected areas. This is the first attempt to analyze the status of conservation in Latin America when some of these social initiatives are included. The analyses were focused on amphibians because they are one of the most threatened groups worldwide. Mexico is not an exception, where more than 60% of its amphibians are endemic. We used a niche model approach to map the potential and real geographical distribution (extracting the transformed areas) of the endemic amphibians. Based on remnant distribution, all the species have suffered some degree of loss, but 36 species have lost more than 50% of their potential distribution. For 50 micro-endemic species we could not model their potential distribution range due to the small number of records per species, therefore the analyses were performed using these records directly. We then evaluated the efficiency of the existing set of governmental protected areas and established the contribution of social initiatives (private and community) for land protection for amphibian conservation. We found that most of the species have some proportion of their potential ecological niche distribution protected, but 20% are not protected at all within governmental PAs. 73% of endemic and 26% of micro-endemic amphibians are represented within SICs. However, 30 micro-endemic species are not represented within either governmental PAs or SICs. This study shows how the role of land conservation through social initiatives is therefore becoming a crucial element for an important number of species not protected by governmental PAs

    Local Extinction and Unintentional Rewilding of Bighorn Sheep (Ovis canadensis) on a Desert Island

    Get PDF
    Bighorn sheep (Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ∼500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was (14)C-dated to 1476–1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ∼1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct
    corecore