38,960 research outputs found

    Colliders and Brane Vector Phenomenology

    Get PDF
    Brane world oscillations manifest themselves as massive vector gauge fields. Their coupling to the Standard Model is deduced using the method of nonlinear realizations of the spontaneously broken higher dimensional space-time symmetries. Brane vectors are stable and weakly interacting, and therefore escape particle detectors unnoticed. LEP and Tevatron data on the production of a single photon in conjunction with missing energy are used to delineate experimentally excluded regions of brane vector parameter space. The additional region of parameter space accessible to the LHC as well as a future lepton linear collider is also determined by means of this process.Comment: 12 pages, 13 figure

    Superconformal Symmetry, The Supercurrent And Non-BPS Brane Dynamics

    Get PDF
    The Noether currents associated with the non-linearly realized super-Poincare' symmetries of the Green-Schwarz (Nambu-Goto-Akulov-Volkov) action for a non-BPS p=2 brane embedded in a N=1, D=4 target superspace are constructed. The R symmetry current, the supersymmetry currents, the energy-momentum tensor and the scalar central charge current are shown to be components of a world volume supercurrent. The centrally extended superconformal transformations are realized on the Nambu-Goldstone boson and fermion fields of the non-BPS brane. The superconformal currents form supersymmetry multiplets with the world volume conformal central charge current and special conformal current being the primary components of the supersymmetry multiplets containing all the currents. Correspondingly the superconformal symmetry breaking terms form supersymmetry multiplets the components of which are obtainable as supersymmetry transformations of the primary currents' symmetry breaking terms.Comment: 27 pages, LaTeX, Summary Tables Adde

    Measurement of vertical velocity using clear-air Doppler radars

    Get PDF
    A new clear air Doppler radar was constructed, called the Flatland radar, in very flat terrain near Champaign-Urbana, Illinois. The radar wavelength is 6.02 m. The radar has been measuring vertical velocity every 153 s with a range resolution of 750 m almost continuously since March 2, 1987. The variance of vertical velocity at Flatland is usually quite small, comparable to the variance at radars located near rough terrain during periods of small background wind. The absence of orographic effects over very flat terrain suggests that clear air Doppler radars can be used to study vertical velocities due to other processes, including synoptic scale motions and propagating gravity waves. For example, near rough terrain the shape of frequency spectra changes drastically as the background wind increases. But at Flatland the shape at periods shorter than a few hours changes only slowly, consistent with the changes predicted by Doppler shifting of gravity wave spectra. Thus it appears that the short period fluctuations of vertical velocity at Flatland are alsmost entirely due to the propagating gravity waves

    Spectroscopy of a Cooper-Pair box in the Autler-Townes configuration

    Get PDF
    A theoretical spectroscopic analysis of a microwave driven superconducting charge qubit (Cooper-pair box coupled) to an RLC oscillator model is performed. By treating the oscillator as a probe through the backreaction effect of the qubit on the oscillator circuit, we extract frequency splitting features analogous to the Autler-Townes effect from quantum optics, thereby extending the analogies between superconducting and quantum optical phenomenology. These features are found in a frequency band that avoids the need for high frequency measurement systems and therefore may be of use in qubit characterization and coupling schemes. In addition we find this frequency band can be adjusted to suit an experimental frequency regime by changing the oscillator frequency.Comment: 13 pages, 7 figures. v2: Revised version after referee comments. Accepted for publication by Physical Review

    A Brownian particle in a microscopic periodic potential

    Full text link
    We study a model for a massive test particle in a microscopic periodic potential and interacting with a reservoir of light particles. In the regime considered, the fluctuations in the test particle's momentum resulting from collisions typically outweigh the shifts in momentum generated by the periodic force, and so the force is effectively a perturbative contribution. The mathematical starting point is an idealized reduced dynamics for the test particle given by a linear Boltzmann equation. In the limit that the mass ratio of a single reservoir particle to the test particle tends to zero, we show that there is convergence to the Ornstein-Uhlenbeck process under the standard normalizations for the test particle variables. Our analysis is primarily directed towards bounding the perturbative effect of the periodic potential on the particle's momentum.Comment: 60 pages. We reorganized the article and made a few simplifications of the conten

    Theory of Ultracold Superstrings

    Full text link
    The combination of a vortex line in a one-dimensional optical lattice with fermions bound to the vortex core makes up an ultracold superstring. We give a detailed derivation of the way to make this supersymmetric string in the laboratory. In particular, we discuss the presence of a fermionic bound state in the vortex core and the tuning of the laser beams needed to achieve supersymmetry. Moreover, we discuss experimental consequences of supersymmetry and identify the precise supersymmetry in the problem. Finally, we make the mathematical connection with string theory.Comment: 16 pages, 9 figures, important factor 2 corrected, accepted for publication in PR

    On dynamical mass generation in three dimensional supersymmetric U(1) gauge field theory

    Get PDF
    We investigate and contrast the non-perturbative infra red structure of N=1 and N=2 supersymmetric non-compact U(1) gauge field theory in three space-time dimensions with N matter flavours. We study the Dyson-Schwinger equations in a general gauge using superfield formalism; this ensures that supersymmetry is kept manifest, though leads to spurious infra red divergences which we have to avoid carefully. In the N=1 case the superfield formalism allows us to choose a vertex which satisfies the U(1) Ward identity exactly, and we find the expected critical behaviour in the wavefunction renormalization and strong evidence for the existence of a gauge independent dynamically generated mass, but with no evidence for a critical flavour number. We study the N=2 model by dimensional reduction from four dimensional N=1 electrodynamics, and we refine the old gauge dependence argument that there is no dynamical mass generation. We recognize that the refinement only holds after dimensional reduction.Comment: 32 pages RevTeX; 3 axodraw figures include

    Pinch Resonances in a Radio Frequency Driven SQUID Ring-Resonator System

    Get PDF
    In this paper we present experimental data on the frequency domain response of a SQUID ring (a Josephson weak link enclosed by a thick superconducting ring) coupled to a radio frequency (rf) tank circuit resonator. We show that with the ring weakly hysteretic the resonance lineshape of this coupled system can display opposed fold bifurcations that appear to touch (pinch off). We demonstrate that for appropriate circuit parameters these pinch off lineshapes exist as solutions of the non-linear equations of motion for the system.Comment: 9 pages, 8 figures, Uploaded as implementing a policy of arXiving old paper

    Non-BPS Brane Dynamics And Dual Tensor Gauge Theory

    Get PDF
    The action for the long wavelength oscillations of a non-BPS p=3 brane embedded in N=1, D=5 superspace is determined by means of the coset method. The D=4 world volume Nambu-Goldstone boson of broken translation invariance and the two D=4 world volume Weyl spinor Goldstinos of the completely broken supersymmetry describe the excitations of the brane into the broken space and superspace directions. The resulting action is an invariant synthesis of the Akulov-Volkov and Nambu-Goto actions. The D=4 antisymmetric tensor gauge theory action dual to the p=3 brane action is determined.Comment: 15 pages, no figure
    corecore