63 research outputs found

    Optomechanical characterization of acoustic modes in a mirror

    Full text link
    We present an experimental study of the internal mechanical vibration modes of a mirror. We determine the frequency repartition of acoustic resonances via a spectral analysis of the Brownian motion of the mirror, and the spatial profile of the acoustic modes by monitoring their mechanical response to a resonant radiation pressure force swept across the mirror surface. We have applied this technique to mirrors with cylindrical and plano-convex geometries, and compared the experimental results to theoretical predictions. We have in particular observed the gaussian modes predicted for plano-convex mirrors.Comment: 8 pages, 8 figures, RevTe

    Radiation-pressure cooling and optomechanical instability of a micro-mirror

    Get PDF
    Recent experimental progress in table-top experiments or gravitational-wave interferometers has enlightened the unique displacement sensitivity offered by optical interferometry. As the mirrors move in response to radiation pressure, higher power operation, though crucial for further sensitivity enhancement, will however increase quantum effects of radiation pressure, or even jeopardize the stable operation of the detuned cavities proposed for next-generation interferometers. The appearance of such optomechanical instabilities is the result of the nonlinear interplay between the motion of the mirrors and the optical field dynamics. In a detuned cavity indeed, the displacements of the mirror are coupled to intensity fluctuations, which modifies the effective dynamics of the mirror. Such "optical spring" effects have already been demonstrated on the mechanical damping of an electromagnetic waveguide with a moving wall, on the resonance frequency of a specially designed flexure oscillator, and through the optomechanical instability of a silica micro-toroidal resonator. We present here an experiment where a micro-mechanical resonator is used as a mirror in a very high-finesse optical cavity and its displacements monitored with an unprecedented sensitivity. By detuning the cavity, we have observed a drastic cooling of the micro-resonator by intracavity radiation pressure, down to an effective temperature of 10 K. We have also obtained an efficient heating for an opposite detuning, up to the observation of a radiation-pressure induced instability of the resonator. Further experimental progress and cryogenic operation may lead to the experimental observation of the quantum ground state of a mechanical resonator, either by passive or active cooling techniques

    Resolved Sideband Cooling of a Micromechanical Oscillator

    Full text link
    Micro- and nanoscale opto-mechanical systems provide radiation pressure coupling of optical and mechanical degree of freedom and are actively pursued for their ability to explore quantum mechanical phenomena of macroscopic objects. Many of these investigations require preparation of the mechanical system in or close to its quantum ground state. Remarkable progress in ground state cooling has been achieved for trapped ions and atoms confined in optical lattices. Imperative to this progress has been the technique of resolved sideband cooling, which allows overcoming the inherent temperature limit of Doppler cooling and necessitates a harmonic trapping frequency which exceeds the atomic species' transition rate. The recent advent of cavity back-action cooling of mechanical oscillators by radiation pressure has followed a similar path with Doppler-type cooling being demonstrated, but lacking inherently the ability to attain ground state cooling as recently predicted. Here we demonstrate for the first time resolved sideband cooling of a mechanical oscillator. By pumping the first lower sideband of an optical microcavity, whose decay rate is more than twenty times smaller than the eigen-frequency of the associated mechanical oscillator, cooling rates above 1.5 MHz are attained. Direct spectroscopy of the motional sidebands reveals 40-fold suppression of motional increasing processes, which could enable reaching phonon occupancies well below unity (<0.03). Elemental demonstration of resolved sideband cooling as reported here should find widespread use in opto-mechanical cooling experiments. Apart from ground state cooling, this regime allows realization of motion measurement with an accuracy exceeding the standard quantum limit.Comment: 13 pages, 5 figure

    Actuation of Micro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces

    Get PDF
    We demonstrate a new type of optomechanical system employing a movable, micron-scale waveguide evanescently-coupled to a high-Q optical microresonator. Micron-scale displacements of the waveguide are observed for milliwatt(mW)-level optical input powers. Measurement of the spatial variation of the force on the waveguide indicates that it arises from a cavity-enhanced optical dipole force due to the stored optical field of the resonator. This force is used to realize an all-optical tunable filter operating with sub-mW control power. A theoretical model of the system shows the maximum achievable force to be independent of the intrinsic Q of the optical resonator and to scale inversely with the cavity mode volume, suggesting that such forces may become even more effective as devices approach the nanoscale.Comment: 4 pages, 5 figures. High resolution version available at (http://copilot.caltech.edu/publications/CEODF_hires.pdf). For associated movie, see (http://copilot.caltech.edu/research/optical_forces/index.htm

    Dynamical Coupling between a Bose-Einstein Condensate and a Cavity Optical Lattice

    Get PDF
    A Bose-Einstein condensate is dispersively coupled to a single mode of an ultra-high finesse optical cavity. The system is governed by strong interactions between the atomic motion and the light field even at the level of single quanta. While coherently pumping the cavity mode the condensate is subject to the cavity optical lattice potential whose depth depends nonlinearly on the atomic density distribution. We observe bistability already below the single photon level and strong back-action dynamics which tunes the system periodically out of resonance.Comment: 5 pages, 4 figure

    Continuous variable entanglement by radiation pressure

    Full text link
    We show that the radiation pressure of an intense optical field impinging on a perfectly reflecting vibrating mirror is able to entangle in a robust way the first two optical sideband modes. Under appropriate conditions, the generated entangled state is of EPR type [A. Einstein, {\it et al.}, Phys. Rev. {\bf 47}, 777 (1935)].Comment: 11 pages, 3 figure

    Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors

    Get PDF
    It has long been thought that the sensitivity of laser interferometric gravitational-wave detectors is limited by the free-mass standard quantum limit, unless radical redesigns of the interferometers or modifications of their input/output optics are introduced. Within a fully quantum-mechanical approach we show that in a second-generation interferometer composed of arm cavities and a signal recycling cavity, e.g., the LIGO-II configuration, (i) quantum shot noise and quantum radiation-pressure-fluctuation noise are dynamically correlated, (ii) the noise curve exhibits two resonant dips, (iii) the Standard Quantum Limit can be beaten by a factor of 2, over a frequency range \Delta f/f \sim 1, but at the price of increasing noise at lower frequencies.Comment: 35 pages, 9 figures; few misprints corrected and some references adde

    Quantum noise in the position measurement of a cavity mirror undergoing Brownian motion

    Get PDF
    We perform a quantum theoretical calculation of the noise power spectrum for a phase measurement of the light output from a coherently driven optical cavity with a freely moving rear mirror. We examine how the noise resulting from the quantum back action appears among the various contributions from other noise sources. We do not assume an ideal (homodyne) phase measurement, but rather consider phase modulation detection, which we show has a different shot noise level. We also take into account the effects of thermal damping of the mirror, losses within the cavity, and classical laser noise. We relate our theoretical results to experimental parameters, so as to make direct comparisons with current experiments simple. We also show that in this situation, the standard Brownian motion master equation is inadequate for describing the thermal damping of the mirror, as it produces a spurious term in the steady-state phase fluctuation spectrum. The corrected Brownian motion master equation [L. Diosi, Europhys. Lett. {\bf 22}, 1 (1993)] rectifies this inadequacy.Comment: 12 pages revtex, 2 figure

    Conversion of conventional gravitational-wave interferometers into QND interferometers by modifying their input and/or output optics

    Get PDF
    The LIGO-II gravitational-wave interferometers (ca. 2006--2008) are designed to have sensitivities at about the standard quantum limit (SQL) near 100 Hz. This paper describes and analyzes possible designs for subsequent, LIGO-III interferometers that can beat the SQL. These designs are identical to a conventional broad-band interferometer (without signal recycling), except for new input and/or output optics. Three designs are analyzed: (i) a "squeezed-input interferometer" (conceived by Unruh based on earlier work of Caves) in which squeezed vacuum with frequency-dependent (FD) squeeze angle is injected into the interferometer's dark port; (ii) a "variational-output" interferometer (conceived in a different form by Vyatchanin, Matsko and Zubova), in which homodyne detection with FD homodyne phase is performed on the output light; and (iii) a "squeezed-variational interferometer" with squeezed input and FD-homodyne output. It is shown that the FD squeezed-input light can be produced by sending ordinary squeezed light through two successive Fabry-Perot filter cavities before injection into the interferometer, and FD-homodyne detection can be achieved by sending the output light through two filter cavities before ordinary homodyne detection. With anticipated technology and with laser powers comparable to that planned for LIGO-II, these interferometers can beat the amplitude SQL by factors in the range from 3 to 5, corresponding to event rate increases between ~30 and ~100 over the rate for a SQL-limited interferometer.Comment: Submitted to Physical Review D; RevTeX manuscript with 16 figures; prints to 33 pages in Physical Review double column format. Minor revisions have been made in response to referee repor
    • …
    corecore