225 research outputs found

    Kondo decoherence: finding the right spin model for iron impurities in gold and silver

    Full text link
    We exploit the decoherence of electrons due to magnetic impurities, studied via weak localization, to resolve a longstanding question concerning the classic Kondo systems of Fe impurities in the noble metals gold and silver: which Kondo-type model yields a realistic description of the relevant multiple bands, spin and orbital degrees of freedom? Previous studies suggest a fully screened spin SS Kondo model, but the value of SS remained ambiguous. We perform density functional theory calculations that suggest S=3/2S = 3/2. We also compare previous and new measurements of both the resistivity and decoherence rate in quasi 1-dimensional wires to numerical renormalization group predictions for S=1/2,1S=1/2,1 and 3/2, finding excellent agreement for S=3/2S=3/2.Comment: 4 pages, 4 figures, shortened for PR

    Pressure dependence of the Curie temperature in Ni2MnSn Heusler alloy: A first-principles study

    Full text link
    The pressure dependence of electronic structure, exchange interactions and Curie temperature in ferromagnetic Heusler alloy Ni2MnSn has been studied theoretically within the framework of the density-functional theory. The calculation of the exchange parameters is based on the frozen--magnon approach. The Curie temperature, Tc, is calculated within the mean-field approximation by solving the matrix equation for a multi-sublattice system. In agrement with experiment the Curie temperature increased from 362K at ambient pressure to 396 at 12 GPa. Extending the variation of the lattice parameter beyond the range studied experimentally we obtained non-monotonous pressure dependence of the Curie temperature and metamagnetic transition. We relate the theoretical dependence of Tc on the lattice constant to the corresponding dependence predicted by the empirical interaction curve. The Mn-Ni atomic interchange observed experimentally is simulated to study its influence on the Curie temperature.Comment: 8 pages, 8 figure

    Разработка информационных систем управления рисками для предметных областей

    Get PDF
    This paper is about specifics of developing risk management information system in construction company and advertising business

    Strongly enhanced orbital moments and anisotropies of adatoms on the Ag(001) surface

    Get PDF
    We present ob initio calculations for orbital moments and anisotropy energies of 3d and 5d adatoms on the Ag(001) surface, based on density functional theory, including Brooks' orbital polarization (OP) term, and applying a fully relativistic Korringa-Kohn-Rostoker-Green's function method. In general, we find unusually large orbital moments and anisotropy energies, e.g., in the 3d series. 2.57 mu (B) and +74 meV for Co, and, in the 5d series, 1.78 mu (B) and +42 meV for Os. These magnetic properties are determined mainly by the OP and even exist without spin-orbit coupling

    Evidence of anisotropic magnetic polarons in la0.94_{0.94}Sr0.06_{0.06}MnO3_3 by neutron scattering and comparison with Ca-doped manganites

    Full text link
    Elastic and inelastic neutron scattering experiments have been performed in a La0.94_{0.94}Sr0.06_{0.06}MnO3_3 untwinned crystal, which exhibits an antiferromagnetic canted magnetic structure with ferromagnetic layers. The elastic small q scattering exhibits a modulation with an anisotropic q-dependence. It can be pictured by ferromagnetic inhomogeneities or polarons with a platelike shape, the largest size (17A˚\approx17\AA) and largest inter-polaron distance (\approx 38A˚\AA) being within the ferromagnetic layers. Comparison with observations performed on Ca-doped samples, which show the growth of the magnetic polarons with doping, suggests that this growth is faster for the Sr than for the Ca substitution. Below the gap of the spin wave branch typical of the AF layered magnetic structure, an additional spin wave branch reveals a ferromagnetic and isotropic coupling, already found in Ca-doped samples. Its q-dependent intensity, very anisotropic, closely reflects the ferromagnetic correlations found for the static clusters. All these results agree with a two-phase electronic segregation occurring on a very small scale, although some characteristics of a canted state are also observed suggesting a weakly inhomogeneous state.Comment: 11 pages, 11 figure

    Magnetization relaxation in (Ga,Mn)As ferromagnetic semiconductors

    Get PDF
    We describe a theory of Mn local-moment magnetization relaxation due to p-d kinetic-exchange coupling with the itinerant-spin subsystem in the ferromagnetic semiconductor (Ga,Mn)As alloy. The theoretical Gilbert damping coefficient implied by this mechanism is calculated as a function of Mn moment density, hole concentration, and quasiparticle lifetime. Comparison with experimental ferromagnetic resonance data suggests that in annealed strongly metallic samples, p-d coupling contributes significantly to the damping rate of the magnetization precession at low temperatures. By combining the theoretical Gilbert coefficient with the values of the magnetic anisotropy energy, we estimate that the typical critical current for spin-transfer magnetization switching in all-semiconductor trilayer devices can be as low as 105Acm2\sim 10^{5} {\rm A cm}^{-2}.Comment: 4 pages, 2 figures, submitted to Rapid Communication

    On-site correlation in valence and core states of ferromagnetic nickel

    Full text link
    We present a method which allows to include narrow-band correlation effects into the description of both valence and core states and we apply it to the prototypical case of nickel. The results of an ab-initio band calculation are used as input mean-field eigenstates for the calculation of self-energy corrections and spectral functions according to a three-body scattering solution of a multi-orbital Hubbard hamiltonian. The calculated quasi-particle spectra show a remarkable agreement with photoemission data in terms of band width, exchange splitting, satellite energy position of valence states, spin polarization of both the main line and the satellite of the 3p core level.Comment: 14 pages, 10 PostScript figures, RevTeX, submitted to PR

    Correlated metals and the LDA+U method

    Full text link
    While LDA+U method is well established for strongly correlated materials with well localized orbitals, its application to weakly correlated metals is questionable. By extending the LDA Stoner approach onto LDA+U, we show that LDA+U enhances the Stoner factor, while reducing the density of states. Arguably the most important correlation effects in metals, fluctuation-induced mass renormalization and suppression of the Stoner factor, are missing from LDA+U. On the other hand, for {\it moderately} correlated metals LDA+U may be useful. With this in mind, we derive a new version of LDA+U that is consistent with the Hohenberg-Kohn theorem and can be formulated as a constrained density functional theory. We illustrate all of the above on concrete examples, including the controversial case of magnetism in FeAl.Comment: Substantial changes. In particular, examples of application of the proposed functional are adde

    The effect of the spin-orbit interaction on the band gap of half-metals

    Get PDF
    The spin-orbit interaction can cause a nonvanishing density of states (DOS) within the minority-spin band gap of half-metals around the Fermi level. We examine the magnitude of the effect in Heusler alloys, zinc-blende half metals and diluted magnetic semiconductors, using first-principles calculations. We find that the ratio of spin-down to spin-up DOS at the Fermi level can range from below 1% (e.g. 0.5% for NiMnSb) over several percents (4.2% for (Ga,Mn)As) to 13% for MnBi.Comment: 5 pages, 3 figure

    Hubbard-U calculations for Cu from first-principles Wannier functions

    Full text link
    We present first-principles calculations of optimally localized Wannier functions for Cu and use these for an ab-initio determination of Hubbard (Coulomb) matrix elements. We use a standard linearized muffin-tin orbital calculation in the atomic-sphere approximation (LMTO-ASA) to calculate Bloch functions, and from these determine maximally localized Wannier functions using a method proposed by Marzari and Vanderbilt. The resulting functions were highly localized, with greater than 89% of the norm of the function within the central site for the occupied Wannier states. Two methods for calculating Coulomb matrix elements from Wannier functions are presented and applied to fcc Cu. For the unscreened on-site Hubbard UU for the Cu 3d-bands we have obtained about 25eV. These results are also compared with results obtained from a constrained local-density approximation (LDA) calculation.Comment: 13 pages, 8 figures, 5 table
    corecore