27,953 research outputs found
Maser radiometer for cosmic background radiation anisotropy measurements
A maser amplifier was incorporated into a low noise radiometer designed to measure large-scale anisotropy in the 3 deg K microwave background radiation. To minimize emission by atmospheric water vapor and oxygen, the radiometer is flown in a small balloon to an altitude to 25 km. Three successful flights were made - two from Palestine, Texas and one from Sao Jose dos Campos, Brazil. Good sky coverage is important to the experiment. Data from the northern hemisphere flights has been edited and calibrated
Energy absorption by "sparse" systems: beyond linear response theory
The analysis of the response to driving in the case of weakly chaotic or
weakly interacting systems should go beyond linear response theory. Due to the
"sparsity" of the perturbation matrix, a resistor network picture of
transitions between energy levels is essential. The Kubo formula is modified,
replacing the "algebraic" average over the squared matrix elements by a
"resistor network" average. Consequently the response becomes semi-linear
rather than linear. Some novel results have been obtained in the context of two
prototype problems: the heating rate of particles in Billiards with vibrating
walls; and the Ohmic Joule conductance of mesoscopic rings driven by
electromotive force. Respectively, the obtained results are contrasted with the
"Wall formula" and the "Drude formula".Comment: 8 pages, 7 figures, short pedagogical review. Proceedings of FQMT
conference (Prague, 2011). Ref correcte
Lattice Model of Sweeping Interface for Drying Process in Water-Granule Mixture
Based on the invasion percolation model, a lattice model for the sweeping
interface dynamics is constructed to describe the pattern forming process by a
sweeping interface upon drying the water-granule mixture. The model is shown to
produce labyrinthine patterns similar to those found in the experiment[Yamazaki
and Mizuguchi, J. Phys. Soc. Jpn. \textbf{69} (2000) 2387]. Upon changing the
initial granular density, resulting patterns undergo the percolation
transition, but estimated critical exponents are different from those of the
conventional percolation. Loopless structure of clusters in the patterns
produced by the sweeping dynamics seems to influence the nature of the
transition.Comment: 6 pages, 7 figure
Crystallization and preliminary crystallographic analysis of the DNA gyrase B protein from B-stearothermophilus
DNA gyrase B (GyrB) from B. stearothermophilus has been crystallized in the presence of the non-hydrolyzable ATP analogue, 5'-adenylpl-beta-gamma-imidodiphosphate (ADPNP), by the dialysis method. A complete native data set to 3.7 Angstrom has been collected from crystals which belonged to the cubic space group I23 with unit-cell dimension a = 250.6 Angstrom. Self-rotation function analysis indicates the position of a molecular twofold axis. Low-resolution data sets of a thimerosal and a selenomethionine derivative have also been analysed. The heavy-atom positions are consistent with one dimer in the asymmetric unit
Quantum response of weakly chaotic systems
Chaotic systems, that have a small Lyapunov exponent, do not obey the common
random matrix theory predictions within a wide "weak quantum chaos" regime.
This leads to a novel prediction for the rate of heating for cold atoms in
optical billiards with vibrating walls. The Hamiltonian matrix of the driven
system does not look like one from a Gaussian ensemble, but rather it is very
sparse. This sparsity can be characterized by parameters and that
reflect the percentage of large elements, and their connectivity respectively.
For we use a resistor network calculation that has direct relation to the
semi-linear response characteristics of the system.Comment: 7 pages, 5 figures, expanded improved versio
Automatic annotation of bioinformatics workflows with biomedical ontologies
Legacy scientific workflows, and the services within them, often present
scarce and unstructured (i.e. textual) descriptions. This makes it difficult to
find, share and reuse them, thus dramatically reducing their value to the
community. This paper presents an approach to annotating workflows and their
subcomponents with ontology terms, in an attempt to describe these artifacts in
a structured way. Despite a dearth of even textual descriptions, we
automatically annotated 530 myExperiment bioinformatics-related workflows,
including more than 2600 workflow-associated services, with relevant
ontological terms. Quantitative evaluation of the Information Content of these
terms suggests that, in cases where annotation was possible at all, the
annotation quality was comparable to manually curated bioinformatics resources.Comment: 6th International Symposium on Leveraging Applications (ISoLA 2014
conference), 15 pages, 4 figure
A Determination of H_0 with the CLASS Gravitational Lens B1608+656: I. Time Delay Measurements with the VLA
We present the results of a program to monitor the four-image gravitational
lens B1608+656 with the VLA. The system was observed over a seven month period
from 1996 October to 1997 May. The 64 epochs of observation have an average
spacing of 3.6~d. The light curves of the four images of the background source
show that the flux density of the background source has varied at the ~5%
level. We measure time delays in the system based on common features that are
seen in all four light curves. The three independent time delays in the system
are found to be Delta t_{BA} = 31 +/- 7~d, Delta t_{BC} = 36 +/- 7~d, and Delta
t_{BD} = 76^{+9}_{-10}~d at 95% confidence. This is the first gravitational
lens system for which three independent time delays have been measured. A
companion paper presents a mass model for the lensing galaxy which correctly
reproduces the observed image positions, flux density ratios, and time delay
ratios. The last condition is crucial for determining H_0 with a four-image
lens. We combine the time delays with the model to obtain a value for the
Hubble constant of H_0 = 59^{+8}_{-7} km/s/Mpc at 95% confidence (statistical)
for (Omega_M, Omega_{Lambda}) = (1,0). In addition, there is an estimated
systematic uncertainty of +/- 15 km/s/Mpc from uncertainties in modeling the
radial mass profiles of the lensing galaxies. The value of H_0 presented in
this paper is comparable to recent measurements of H_0 from the gravitational
lenses 0957+561, PG1115+080, B0218+357, and PKS1830-211.Comment: Accepted for publication in ApJ. 20 pages, 13 figure
Effect of Noise on Patterns Formed by Growing Sandpiles
We consider patterns generated by adding large number of sand grains at a
single site in an abelian sandpile model with a periodic initial configuration,
and relaxing. The patterns show proportionate growth. We study the robustness
of these patterns against different types of noise, \textit{viz.}, randomness
in the point of addition, disorder in the initial periodic configuration, and
disorder in the connectivity of the underlying lattice. We find that the
patterns show a varying degree of robustness to addition of a small amount of
noise in each case. However, introducing stochasticity in the toppling rules
seems to destroy the asymptotic patterns completely, even for a weak noise. We
also discuss a variational formulation of the pattern selection problem in
growing abelian sandpiles.Comment: 15 pages,16 figure
Parametric instabilities in the LCGT arm cavity
We evaluated the parametric instabilities of LCGT (Japanese interferometric
gravitational wave detector project) arm cavity. The number of unstable modes
of LCGT is 10-times smaller than that of Advanced LIGO (U.S.A.). Since the
strength of the instabilities of LCGT depends on the mirror curvature more
weakly than that of Advanced LIGO, the requirement of the mirror curvature
accuracy is easier to be achieved. The difference in the parametric
instabilities between LCGT and Advanced LIGO is because of the thermal noise
reduction methods (LCGT, cooling sapphire mirrors; Advanced LIGO, fused silica
mirrors with larger laser beams), which are the main strategies of the
projects. Elastic Q reduction by the barrel surface (0.2 mm thickness
TaO) coating is effective to suppress instabilities in the LCGT arm
cavity. Therefore, the cryogenic interferometer is a smart solution for the
parametric instabilities in addition to thermal noise and thermal lensing.Comment: 6 pages,3 figures. Amaldi7 proceedings, J. Phys.: Conf. Ser.
(accepted
- …
