16 research outputs found

    Tuning a Josephson junction through a quantum critical point

    Full text link
    We tune the barrier of a Josephson junction through a zero-temperature metal-insulator transition and study the thermodynamic behavior of the junction in the proximity of the quantum-critical point. We examine a short-coherence-length superconductor and a barrier (that is described by a Falicov-Kimball model) using the local approximation and dynamical mean-field theory. The inhomogeneous system is self-consistently solved by performing a Fourier transformation in the planar momentum and exactly inverting the remaining one-dimensional matrix with the renormalized perturbation expansion. Our results show a delicate interplay between oscillations on the scale of the Fermi wavelength and pair-field correlations on the scale of the coherence length, variations in the current-phase relationship, and dramatic changes in the characteristic voltage as a function of the barrier thickness or correlation strength (which can lead to an ``intrinsic'' pinhole effect).Comment: 16 pages, 15 figures, ReVTe

    Progress Control in Variable Neighbourhood Search

    Get PDF
    The methods of intensification and diversification are indispensable in successful meta heuristics for local search. Intensification corresponds in some sense to local optimisation; the neighbourhood of a solution is searched intensively for solutions which are better or have better opportunities. On the other hand, diversification tries to escape from (relatively small) neighbourhoods to solutions which might lead to better final results. A heuristic that is well aware of the intensification versus diversification problems, is the Variable Neighbourhood Search (VNS), see [2]. In this method, more than one neighbourhood structure is considered. After finishing intensification with respect to one neighbourhood, the heuristic diversifies to another neighbourhood. In this way one hopes to escape from poor local optima.\ud In this work we introduce a model to predict the quality of a neighbourhood. We use this model to identify 'bad' neighbourhoods and avoid searching them. We call this process 'Progress Control'. Computational results are presented to show that progress control helps us finding better solutions in the same amount of time

    A scatter search methodology for the nurse rostering problem

    No full text
    The benefits of automating the nurse scheduling process in hospitals include reducing the planning workload and associated costs and being able to create higher quality and more flexible schedules. This has become more important recently in order to retain nurses and to attract more people into the profession. Better quality rosters also reduce fatigue and stress due to overwork and poor scheduling and help to maximise the use of leisure time by satisfying more requests. A more contented workforce will lead to higher productivity, increased quality of patient service and a better level of healthcare. This paper presents a scatter search approach for the problem of automatically creating nurse rosters. Scatter search is an evolutionary algorithm, which has been successfully applied across a number of problem domains. To adapt and apply scatter search to nurse rostering, it was necessary to develop novel implementations of some of scatter search's subroutines. The algorithm was then tested on publicly available real-world benchmark instances and compared against previously published approaches. The results show the proposed algorithm is a robust and effective method on a wide variety of real-world instances

    Progress control in iterated local search for nurse rostering

    Get PDF
    This paper describes an approach in which a local search technique is alternated with a process which ‘jumps’ to another point in the search space. After each ‘jump’ a (time-intensive) local search is used to obtain a new local optimum. The focus of the paper is in monitoring the progress of this technique on a set of real world nurse rostering problems. We propose a model for estimating the quality of this new local optimum. We can then decide whether to end the local search based on the predicted quality. The fact that we avoid searching these bad neighbourhoods enables us to reach better solutions in the same amount of time. We evaluate the approach on five highly constrained problems in nurse rostering. These problems represent complex and challenging real world rostering situations and the approach described here has been developed during a commercial implementation project by ORTEC bv

    JC Virus Multiplication in Human Hematopoietic Progenitor Cells Requires the NF-1 Class D Transcription Factor

    No full text
    JCV, a small DNA virus of the polyomavirus family, has been shown to infect glial cells of the central nervous system, hematopoietic progenitor cells, and immune system lymphocytes. A family of DNA binding proteins called nuclear factor-1 (NF-1) has been linked with site-coding specific transcription of cellular and viral genes and replication of some viruses, including JC virus (JCV). It is unclear which NF-1 gene product must be expressed by cells to promote JCV multiplication. Previously, it was shown that elevated levels of NF-1 class D mRNA were expressed by human brain cells that are highly susceptible to JCV infection but not by JCV nonpermissive HeLa cells. Recently, we reported that CD34(+) precursor cells of the KG-1 line, when treated with the phorbol ester phorbol 12-myristate 13-acetate (PMA), differentiated to cells with macrophage-like characteristics and lost susceptibility to JCV infection. These studies have now been extended by asking whether loss of JCV susceptibility by PMA-treated KG-1 cells is linked with alterations in levels of NF-1 class D expression. Using reverse transcription-PCR, we have found that PMA-treated KG-1 cells express mRNA that codes for all four classes of NF-1 proteins, although different levels of RNA expression were observed in the hematopoietic cells differentiated into macrophages. Northern hybridization confirms that the expression of NF-1 class D gene is lower in JCV nonpermissive PMA-treated KG-1 cells compared with non-PMA-treated cells. Further, using gel mobility shift assays, we were able to show the induction of specific NF-1–DNA complexes in KG-1 cells undergoing PMA treatment. The binding increases in direct relation to the duration of PMA treatment. These results suggest that the binding pattern of NF-1 class members may change in hematopoietic precursor cells, such as KG-1, as they undergo differentiation to macrophage-like cells. Transfection of PMA-treated KG-1 cells with an NF-1 class D expression vector restored the susceptibility of these cells to JCV infection, while the transfection of PMA-treated KG-1 cells with NF-1 class A, B, and C vectors was not able to restore JCV susceptibility. These data collectively suggest that selective expression of NF-1 class D has a regulatory role in JCV multiplication
    corecore