
Progress Control in Variable Neighbourhood
Search

Tim Curtois1, Laurens Fijn van Draat2, Jan-Kees van Ommeren3, and
Gerhard Post23

1 ASAP, School of Computer Science and IT, University of Nottingham, Jubilee
Campus, Nottingham, UK

2 ORTEC bv, Groningenweg 6K, 2803 PV Gouda, The Netherlands, www.ortec.com
3 Department of Applied Mathematics, University Twente, P.O. Box 217, 7500 AE

Enschede, The Netherlands

1 Introduction

The methods of intensification and diversification are indispensable in successful
meta heuristics for local search. Intensification corresponds in some sense to local
optimisation; the neighbourhood of a solution is searched intensively for solutions
which are better or have better opportunities. On the other hand, diversification
tries to escape from (relatively small) neighbourhoods to solutions which might
lead to better final results. A heuristic that is well aware of the intensification
versus diversification problems, is the Variable Neighbourhood Search (VNS),
see [2]. In this method, more than one neighbourhood structure is considered.
After finishing intensification with respect to one neighbourhood, the heuristic
diversifies to another neighbourhood. In this way one hopes to escape from poor
local optima.

In this work we introduce a model to predict the quality of a neighbourhood.
We use this model to identify ‘bad’ neighbourhoods and avoid searching them.
We call this process ‘Progress Control’. Computational results are presented to
show that progress control helps us finding better solutions in the same amount
of time.

2 Problem setting

2.1 Alternating Neighbourhood Search

Our object of research is a specific type of VNS, in which there is a ‘small’
neighbourhood, and a ‘large’ neighbourhood. After reaching a local optimum
with respect to the small neighbourhood, we move our attention to another
solution in the large neighbourhood. From here we again perform local optimi-
sation with respect to the new small neighbourhood. If we reach a better local
optimum, we take this new solution as the starting point for further investiga-
tion, otherwise we revert to the old local optimum, and continue from there. We
call this method ‘Alternating Neighbourhood Search’ (ANS).



In ANS it is normal that 99% of the calculation time is spent on local opti-
misation with respect to the small neighbourhood. A possibility to improve the
performance of ANS is to detect, somehow, that it is useless to continue the
current local optimisation. The most obvious way is to stop if, after some fixed
amount of time, a certain quality has not been reached. In our experience, this
method is not good enough: a bad solution that improves steadily might still be
a promising one.

In this section we propose a model for the progress of the local optimisa-
tion process. With this model we follow the progress and try to predict which
neighbourhoods are good and which are bad.

2.2 Modeling the progress

Suppose we follow the local optimisation and get an update of the result every τ
milliseconds. With cn we denote the cost after n periods. Furthermore we denote
with c = c∞ the cost of the local optimum that eventually will be reached. Since
we apply local optimisation, we know that cn+1 ≤ cn. The moves are selected
randomly, hence it seems reasonable that the chance that a move at time tn is
successful is proportional to the difference cn − c. Hence, for the expected value
of the cost cn we get

E(cn − c) = λ(cn−1 − c).

Solving this recursion relation we obtain

E(cn) = (c0 − c)λn + c. (1)

In continuous time we use tn = n · τ to get

c(t) = AeBt + C, (2)

which is more convenient to use. Here A = c0 − c, C = c, and eBτ = λ.

Several assumptions underlie this model:

1. The number of good moves is proportional to the difference of the current
score and the end score. In practice this is not correct: some violations of
soft constraints can be removed by several moves and will probably found
earlier. This implies that λ decreases with time (hence our early estimates
are optimistic).

2. The cost change of a good move is always the same. In practice this is
not correct: soft constraint violations with high costs are usually detected
earlier, as a move can lift this high cost at introducing small costs for other
soft constraints. Again early estimates are optimistic.

3. All moves take an equal calculation time. In practice this is not exactly the
case, but if τ is relatively big, several hundreds of moves occur between tn
and tn+1, and the number of these moves is with high probability close to
average.



All these assumptions make that the predicted progress differs from the realised
progress: the realised progress is much more irregular, especially in the beginning
of the local optimisation. For this reason we use a rolling horizon for the progress
controller, see section 2.3.

Although the model above is the most appealing model, we did not use it
in our more extensive experiments. Preliminary experiments revealed that the
approach in (2) is hard to scale: quite soon the exponential factor B is strongly
negative, and C equals approximately the latest cost. To circumvent this problem
we assume that the local optimisation will reach a perfect result of cost 0. Hence
we try to approximate the progress with the curve

c(t) = AeBt. (3)

With this formula we can estimate t∗, the time needed before the local op-
timiser will reach the quality of the current best result. If this estimated time
t∗ is larger than a certain reference time T we stop the local optimisation. The
assumption that the local optimisation will end with cost 0 is obviously not cor-
rect. But as before we take an optimistic point of view: if we would estimate the
end cost to be higher, the time t∗ would be larger, which implies that we would
stop the process sooner.

2.3 Progress control

Using the (natural) logarithm in (3) leads to the linear function:

log c(t) = log A + Bt. (4)

We use the least squares method to find the line y = αx + β, approximating
the points (xk, yk) where xk = tk and yk = log(ck). A side effect of the least
squares method is that big jumps in the costs have a relative large influence;
since jumps are always downward, this will pull the curve (3) down. This seems
good in our situation, where jumps correspond to an unstable situation, in which
case some more patience seems appropriate.

We use our estimates of α and β to predict t∗ each time we record a new
value of cn. For calculating t∗ and taking the decision whether or not to stop we
use three parameters p, f , and m:

(p) We use a rolling horizon: we forget about early points, and estimate the
future progress only based on the last p points.

(f) We use a start-up time: for the first f points we record whether t∗ > T
or not, but we never stop the process. If f = ∞ we perform ANS without
progress control.

(m) We use forgiveness: we do not necessarily stop directly if some t∗n > T , but
only if this happened more than m times in the last p checks. Clearly we will
never stop before tm; hence it is useless to consider f < m. In particular if
m ≥ p, we do not stop at all.

We call a combination of these parameters (p, f,m) a strategy. Our main
objective is to investigate the influence of a chosen strategy on the quality of the
solution, assuming that we have a limited time at our disposal.



3 Results

The problem area we consider is personnel scheduling; the objects we try to
schedule are shifts, which are fixed in time. The shifts have to be assigned to
resources (employees), such that all hard constraints are satisfied, and the cost,
resulting from trespassing soft constraints, is minimised. We use the Variable
Neighbourhood Search as introduced in [1] as ANS. This algorithm is imple-
mented in the advanced planning system HARMONY, developed by ORTEC
for workforce management and scheduling.

We tested our progress control on five different datasets with different sizes.
For each dataset we simulated 1000 runs and recorded the average values of some
key figures for different strategies. In Table 1 we give per dataset the key figures
for not applying any strategy (the lines with the ‘-’) and for the best strategy
found. The size of the problems is indicated by the column ‘# Empl.’.

Name # p∗ f∗ m∗ Bad Bad Good Good Tries Time De- (Decrease/
Empl. stop cont. stop cont. crease Time)*1000

DataA 12 - - - 0 318 0 682 1.5 1090 243 223
14 3 0 315 3 586 96 10.1 948 426 449

Data2 8 - - - 0 476 0 524 1.9 3105 14 4.6
33 3 1 470 6 478 46 22 2122 28 13.2

Data1 46 - - - 0 639 0 361 2.7 245 10.9 44
3 2 0 639 0 239 122 8.2 112 14.6 130

ORTEC1 16 - - - 0 704 0 296 3.4 515 503 975
46 3 2 646 58 229 67 14.7 459 605 1319

ORTEC2 16 - - - 0 800 0 200 4.8 952 324 341
33 9 4 748 52 116 84 11.9 760 472 622

Table 1. Best found strategies for five different datasets and the average values of the
key figures.

The columns ‘Bad stop’ and ‘Bad cont.’ show the number of ‘bad’ neighbour-
hoods that are stopped or continued by our strategy. A ‘bad’ neighbourhood is a
neighbourhood where the local optimisation eventually does not reach a better
solution than the best known so far. We see that the optimal strategies filter out
almost all of the bad neighbourhoods, just as we hoped. However, in the colums
‘Good stop’ and ‘Good cont.’ we see that our strategies also stop a lot of good
neighbourhoods. As a result we see in the column ‘Tries’ that our strategies need
3 to 10 times more neighbourhoods to find a better solution than not applying
any strategy. But still, in the column ‘Time’ we can see that it takes our strate-
gies less time to find a better solution. For Data1 we even see that we gain more
than 50% in time! The column ‘Decrease’ shows the difference between the score
to beat and the score of the solution found after the first improvement. Here we
see that the improvement in score is 20-100% higher for our strategies compared



to not applying progress control. This is caused by the fact that we are likely to
skip neighbourhoods that give only a small improvement.

We can conclude that our progress control finds better solutions and that it
finds them faster. The combination of these effects is shown in the last column.
Of course it will be very hard, if not impossible, to find the optimal strategy
before the optimisation process. But we found out that most strategies are an
improvement compared to not applying progress control at all, so finding a good
strategy is not so hard.

4 Conclusions

We defined progress control as the process of estimating the progress of a local
optimisation in a neighbourhood and using these estimates to stop searching
‘bad’ neighbourhoods. The results show that progress control is a good idea in
our Shift Scheduling problem. Since we didn’t use any knowledge of the problem
or even of the VNS we used, we believe that it is applicable to many versions of
Iterated Local Search.

Finally, we like to stress that we do not pretend that our model predicts the
expected value of c∞; as can be noted in equation (3) we do not even try this.
In fact, we are not even interested in the progress itself. We only try to predict
whether or not a local optimisation will end up in a solution with a better score
than the best known so far.

References

1. E. Burke, T. Curtois, G. Post, R. Qu, B. Veltman, A hybrid heuristic and vari-
able neighbourhoud search for the nurse rostering problem , Proceeding of the 5th
international conference on the Practice and Theory of Automated Timetabling
(PATAT 2004), pp. 445-446 (2004).

2. N. Mladenović, P. Hansen, Variable Neighborhood Search, Computers & Operations
Research 24, pp. 1097–1100, (1997).


