102 research outputs found

    The boundary of the first order chiral phase transition in the m_pi-m_K--plane with a linear sigma model

    Get PDF
    Tree-level and complete one-loop parametrisation of the linear sigma model (LSM) is performed and the phase boundary between first order and crossover transition regions of the m_pi-m_K-plane is determined using the optimised perturbation theory (OPT) as a resummation tool of perturbative series. Away from the physical point the parameters of the model were determined by making use of chiral perturbation theory (ChPT). The location of the phase boundary for m_pi=m_K and of the tricritical point (TCP) on the m_pi=0 were estimated.Comment: 4 pages, 1 figure, uses espcrc1.sty; to appear in the proceedings of Strong and Electroweak Matter 2006 (SEWM06), BNL, May 200

    In-medium pi-pi Correlation Induced by Partial Restoration of Chiral Symmetry

    Get PDF
    We show that both the linear and the non-linear chiral models give an enhancement of the pi-pi cross section near the 2pi threshold in the scalar-iso-scalar (I=J=0) channel in nuclear matter. The reduction of the chiral condensate, i.e., the partial chiral restoration in nuclear matter, is responsible for the enhancement in both cases. We extract an effective 4pi-nucleon vertex which is responsible for the enhancement but has not been considered in the non-liear models for in-medium pi-pi interaction. Relation of this vertex and a next-to-leading order terms in the heavy-baryon chiral lagrangian, L_piN^(2), is also discussed.Comment: 5 pages, 5 eps figure, REVTe

    A Precursor of Chiral Symmetry Restoration in the Nuclear Medium

    Full text link
    Spectral enhancement near the 2m_{\pi} threshold in the I=J=0 channel in nuclei is shown to be a distinct signal of the partial restoration of chiral symmetry. The relevance of this phenomenon with the possible detection of 2\pi^{0} and 2\gamma in hadron-nucleus and photo-nucleus reactions is discussed.Comment: Revtex, 4 pages, 3 eps figures, title and introduction changed, to appear in Phys. Rev. Let

    Spectral functions in the sigma-channel near the critical end point

    Get PDF
    Spectral functions in the σ\sigma-channel are investigated near the chiral critical end point (CEP), that is, the point where the chiral phase transition ceases to be first-ordered in the (μ,T)(\mu,T)-plane of the QCD phase diagram. At that point the σ\sigma meson becomes massless in spite of explicit breaking of the chiral symmetry. It is expected that experimental signatures peculiar to CEP can be observed through spectral changes in the presence of abnormally light σ\sigma mesons. As a candidate, the invariant-mass spectrum for diphoton emission is estimated with the chiral quark model incorporated. The results show the characteristic shape with a peak in the low energy region, which may serve as a signal for CEP. However, we find that the diphoton multiplicity is highly suppressed by infrared behaviors of the σ\sigma meson. Experimentally, in such a low energy region below the threshold of two pions, photons from π02γ\pi^0\to2\gamma are major sources of the background for the signal.Comment: 12 pages, 8 figures, 1 figure replaced, minor modification

    Investigation into O(N) Invariant Scalar Model Using Auxiliary-Mass Method at Finite Temperature

    Get PDF
    Using auxiliary-mass method, O(N) invariant scalar model is investigated at finite temperature. This mass and an evolution equation allow us to calculate an effective potential without an infrared divergence. Second order phase transition is indicated by the effective potential. The critical exponents are determined numerically.Comment: LaTex 8 pages with 3 eps figure

    Thermal and Nonthermal Pion Enhancements with Chiral Symmetry Restoration

    Get PDF
    The pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated in the framework of the Nambu-Jona-Lasinio model. The decay rate for the process sigma -> 2pion to the lowest order in a 1/N_c expansion is calculated as a function of temperature T and chemical potential mu. The thermal and nonthermal enhancements of pions generated by the decay before and after the freeze-out present only in the crossover region of the chiral symmetry transition. The strongest nonthermal enhancement is located in the vicinity of the endpoint of the first-order transition.Comment: Latex2e, 12 pages, 8 Postscript figures, submitted to Phys. Rev.

    Simultaneous Softening of sigma and rho Mesons associated with Chiral Restoration

    Full text link
    Complex poles of the unitarized pi-pi scattering amplitude in nuclear matter are studied. Partial restoration of chiral symmetry is modeled by the decrease of in-medium pion decay constant f*_{pi}. For large chiral restoration (f*_{pi}/f_{pi} << 1), 2nd sheet poles in the scalar (sigma) and the vector (rho) mesons are both dictated by the Lambert W function and show universal softening as f*_{pi} decreases. In-medium pi-pi cross section receives substantial contribution from the soft mode and exhibits a large enhancement in low-energy region. Fate of this universality for small chiral restoration (f*_{pi}/f_{pi} ~ 1) is also discussed.Comment: 5 pages, 4-eps figures, version accepted by Phys. Rev. C (R) with minor modification

    Linear sigma model and chiral symmetry at finite temperature

    Get PDF
    The chiral phase transition is investigated within the framework of the linear sigma model at finite temperature. We concentrate on the meson sector of the model and calculate the finite temperature effective potential in the Hartree approximation by using the Cornwall-Jackiw-Tomboulis formalism of composite operators. The effective potential is calculated for N=4 involving the usual sigma and three pions and in the large N approximation involving N-1 pion fields. In the N=4 case we have examined the theory both in the chiral limit and with the presence of a symmetry breaking term which generates the pion masses. In both cases we have solved the system of the resulting gap equations for the thermal effective masses of the particles numerically and we have investigated the evolution of the effective potential. In the N=4 case there is indication of a first order phase transition and the Goldstone theorem is not satisfied. The situation is different in the general case using the large NN approximation, the Goldstone theorem is satisfied and the phase transition is of the second order. For this analysis we have ignored quantum effects and we used the imaginary time formalism for calculations.Comment: 14 pages, 5 eps figures, RevTex, axodraw.st
    corecore