1,769 research outputs found

    Mutual information challenges entropy bounds

    Full text link
    We consider some formulations of the entropy bounds at the semiclassical level. The entropy S(V) localized in a region V is divergent in quantum field theory (QFT). Instead of it we focus on the mutual information I(V,W)=S(V)+S(W)-S(V\cup W) between two different non-intersecting sets V and W. This is a low energy quantity, independent of the regularization scheme. In addition, the mutual information is bounded above by twice the entropy corresponding to the sets involved. Calculations of I(V,W) in QFT show that the entropy in empty space cannot be renormalized to zero, and must be actually very large. We find that this entropy due to the vacuum fluctuations violates the FMW bound in Minkowski space. The mutual information also gives a precise, cutoff independent meaning to the statement that the number of degrees of freedom increases with the volume in QFT. If the holographic bound holds, this points to the essential non locality of the physical cutoff. Violations of the Bousso bound would require conformal theories and large distances. We speculate that the presence of a small cosmological constant might prevent such a violation.Comment: 10 pages, 2 figures, minor change

    Remarks on the entanglement entropy for disconnected regions

    Full text link
    Few facts are known about the entanglement entropy for disconnected regions in quantum field theory. We study here the property of extensivity of the mutual information, which holds for free massless fermions in two dimensions. We uncover the structure of the entropy function in the extensive case, and find an interesting connection with the renormalization group irreversibility. The solution is a function on space-time regions which complies with all the known requirements a relativistic entropy function has to satisfy. We show that the holographic ansatz of Ryu and Takayanagi, the free scalar and Dirac fields in dimensions greater than two, and the massive free fields in two dimensions all fail to be exactly extensive, disproving recent conjectures.Comment: 14 pages, 4 figures, some addition

    Removal of Spectro-Polarimetric Fringes by 2D Pattern Recognition

    Full text link
    We present a pattern-recognition based approach to the problem of removal of polarized fringes from spectro-polarimetric data. We demonstrate that 2D Principal Component Analysis can be trained on a given spectro-polarimetric map in order to identify and isolate fringe structures from the spectra. This allows us in principle to reconstruct the data without the fringe component, providing an effective and clean solution to the problem. The results presented in this paper point in the direction of revising the way that science and calibration data should be planned for a typical spectro-polarimetric observing run.Comment: ApJ, in pres

    Positivity, entanglement entropy, and minimal surfaces

    Full text link
    The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n→1n\rightarrow 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n−1n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT.Comment: 36 pages, 10 figures. Changes in presentation and discussion of Wilson loops. Conclusions regarding entanglement entropy unchange

    A Note on the Radiative and Collisional Branching Ratios in Polarized Radiation Transport with Coherent Scattering

    Full text link
    We discuss the implementation of physically meaningful branching ratios between the CRD and PRD contributions to the emissivity of a polarized multi-term atom in the presence of both inelastic and elastic collisions. Our derivation is based on a recent theoretical formulation of partially coherent scattering, and it relies on a heuristic diagrammatic analysis of the various radiative and collisional processes to determine the proper form of the branching ratios. The expression we obtain for the emissivity is ε=[ε(1)−εf.s.(2)]+ε(2)\varepsilon=\left[\varepsilon^{\tiny (1)}-\varepsilon^{\tiny (2)}_{\rm f.s.} \right]+\varepsilon^{\tiny (2)}, where ε(1)\varepsilon^{\tiny (1)} and ε(2)\varepsilon^{\tiny (2)} are the emissivity terms for the redistributed and partially coherent radiation, respectively, and where "f.s." implies that the corresponding term must be evaluated assuming a flat-spectrum average of the incident radiation

    Optimizing the computation of overriding

    Full text link
    We introduce optimization techniques for reasoning in DLN---a recently introduced family of nonmonotonic description logics whose characterizing features appear well-suited to model the applicative examples naturally arising in biomedical domains and semantic web access control policies. Such optimizations are validated experimentally on large KBs with more than 30K axioms. Speedups exceed 1 order of magnitude. For the first time, response times compatible with real-time reasoning are obtained with nonmonotonic KBs of this size

    Universal terms for the entanglement entropy in 2+1 dimensions

    Full text link
    We show that the entanglement entropy and alpha entropies corresponding to spatial polygonal sets in (2+1)(2+1) dimensions contain a term which scales logarithmically with the cutoff. Its coefficient is a universal quantity consisting in a sum of contributions from the individual vertices. For a free scalar field this contribution is given by the trace anomaly in a three dimensional space with conical singularities located on the boundary of a plane angular sector. We find its analytic expression as a function of the angle. This is given in terms of the solution of a set of non linear ordinary differential equations. For general free fields, we also find the small-angle limit of the logarithmic coefficient, which is related to the two dimensional entropic c-functions. The calculation involves a reduction to a two dimensional problem, and as a byproduct, we obtain the trace of the Green function for a massive scalar field in a sphere where boundary conditions are specified on a segment of a great circle. This also gives the exact expression for the entropies for a scalar field in a two dimensional de Sitter space.Comment: 15 pages, 3 figures, extended version with full calculations, added reference

    Analytic results on the geometric entropy for free fields

    Full text link
    The trace of integer powers of the local density matrix corresponding to the vacuum state reduced to a region V can be formally expressed in terms of a functional integral on a manifold with conical singularities. Recently, some progress has been made in explicitly evaluating this type of integrals for free fields. However, finding the associated geometric entropy remained in general a difficult task involving an analytic continuation in the conical angle. In this paper, we obtain this analytic continuation explicitly exploiting a relation between the functional integral formulas and the Chung-Peschel expressions for the density matrix in terms of correlators. The result is that the entropy is given in terms of a functional integral in flat Euclidean space with a cut on V where a specific boundary condition is imposed. As an example we get the exact entanglement entropies for massive scalar and Dirac free fields in 1+1 dimensions in terms of the solutions of a non linear differential equation of the Painleve V type.Comment: 7 pages, minor change

    Short-distance regularity of Green's function and UV divergences in entanglement entropy

    Get PDF
    Reformulating our recent result (arXiv:1007.1246 [hep-th]) in coordinate space we point out that no matter how regular is short-distance behavior of Green's function the entanglement entropy in the corresponding quantum field theory is always UV divergent. In particular, we discuss a recent example by Padmanabhan (arXiv:1007.5066 [gr-qc]) of a regular Green's function and show that provided this function arises in a field theory the entanglement entropy in this theory is UV divergent and calculate the leading divergent term.Comment: LaTeX, 6 page
    • …
    corecore