450 research outputs found

    Hunting for open clusters in \textit{Gaia} DR2: the Galactic anticentre

    Full text link
    The Gaia Data Release 2 (DR2) provided an unprecedented volume of precise astrometric and excellent photometric data. In terms of data mining the Gaia catalogue, machine learning methods have shown to be a powerful tool, for instance in the search for unknown stellar structures. Particularly, supervised and unsupervised learning methods combined together significantly improves the detection rate of open clusters. We systematically scan Gaia DR2 in a region covering the Galactic anticentre and the Perseus arm (120l205(120 \leq l \leq 205 and 10b10)-10 \leq b \leq 10), with the goal of finding any open clusters that may exist in this region, and fine tuning a previously proposed methodology successfully applied to TGAS data, adapting it to different density regions. Our methodology uses an unsupervised, density-based, clustering algorithm, DBSCAN, that identifies overdensities in the five-dimensional astrometric parameter space (l,b,ϖ,μα,μδ)(l,b,\varpi,\mu_{\alpha^*},\mu_{\delta}) that may correspond to physical clusters. The overdensities are separated into physical clusters (open clusters) or random statistical clusters using an artificial neural network to recognise the isochrone pattern that open clusters show in a colour magnitude diagram. The method is able to recover more than 75% of the open clusters confirmed in the search area. Moreover, we detected 53 open clusters unknown previous to Gaia DR2, which represents an increase of more than 22% with respect to the already catalogued clusters in this region. We find that the census of nearby open clusters is not complete. Different machine learning methodologies for a blind search of open clusters are complementary to each other; no single method is able to detect 100% of the existing groups. Our methodology has shown to be a reliable tool for the automatic detection of open clusters, designed to be applied to the full Gaia DR2 catalogue.Comment: 8 pages, accepted by Astronomy and Astrophysics (A&A) the 14th May, 2019. Tables 1 and 2 available at the CD

    Abundances and kinematics for ten anticentre open clusters

    Get PDF
    Open clusters are distributed all across the disk and are convenient tracers of its properties. In particular, outer disk clusters bear a key role for the investigation of the chemical evolution of the Galactic disk. The goal of this study is to derive homogeneous elemental abundances for a sample of ten outer disk OCs, and investigate possible links with disk structures such as the Galactic Anticenter Stellar Structure. We analyse high-resolution spectra of red giants, obtained from the HIRES@Keck and UVES@VLT archives. We derive elemental abundances and stellar atmosphere parameters by means of the classical equivalent width method. We also performed orbit integrations using proper motions. The Fe abundances we derive trace a shallow negative radial metallicity gradient of slope -0.027+/-0.007 dex.kpc-1 in the outer 12 kpc of the disk. The [alpha/Fe] gradient appears flat, with a slope of 0.006+/-0.007 dex.kpc-1 . The two outermost clusters (Be 29 and Sau 1) appear to follow elliptical orbits. Be 20 also exhibits a peculiar orbit with a large excursion above the plane. The irregular orbits of the three most metal-poor clusters (of which two are located at the edge of the Galactic disk), if confirmed by more robust astrometric measurements such as those of the Gaia mission, are compatible with an inside-out formation scenario for the Milky Way, in which extragalactic material is accreted onto the outer disk. We cannot determine if Be 20, Be 29,and Sau 1 are of extragalactic origin, as they may be old genuine Galactic clusters whose orbits were perturbed by accretion events or minor mergers in the past 5 Gyr, or they may be representants of the thick disk population. The nature of these objects is intriguing and deserves further investigations in the near future.Comment: 17 pages, 9 figures; accepted for publication in A&

    A ring in a shell: the large-scale 6D structure of the Vela OB2 complex

    Get PDF
    The Vela OB2 association is a group of 10 Myr stars exhibiting a complex spatial and kinematic substructure. The all-sky Gaia DR2 catalogue contains proper motions, parallaxes (a proxy for distance) and photometry that allow us to separate the various components of Vela OB2. We characterise the distribution of the Vela OB2 stars on a large spatial scale, and study its internal kinematics and dynamic history. We make use of Gaia DR2 astrometry and published Gaia-ESO Survey data. We apply an unsupervised classification algorithm to determine groups of stars with common proper motions and parallaxes. We find that the association is made up of a number of small groups, with a total current mass over 2330 Msun. The three-dimensional distribution of these young stars trace the edge of the gas and dust structure known as the IRAS Vela Shell across 180 pc and shows clear signs of expansion. We propose a common history for Vela OB2 and the IRAS Vela Shell. The event that caused the expansion of the shell happened before the Vela OB2 stars formed, imprinted the expansion in the gas the stars formed from, and most likely triggered star formation.Comment: Accepted by A&A (02 November 2018), 13 pages, 9+2 figure

    An analytical analysis of vesicle tumbling under a shear flow

    Full text link
    Vesicles under a shear flow exhibit a tank-treading motion of their membrane, while their long axis points with an angle < 45 degrees with respect to the shear stress if the viscosity contrast between the interior and the exterior is not large enough. Above a certain viscosity contrast, the vesicle undergoes a tumbling bifurcation, a bifurcation which is known for red blood cells. We have recently presented the full numerical analysis of this transition. In this paper, we introduce an analytical model that has the advantage of being both simple enough and capturing the essential features found numerically. The model is based on general considerations and does not resort to the explicit computation of the full hydrodynamic field inside and outside the vesicle.Comment: 19 pages, 9 figures, to be published in Phys. Rev.

    Normal subgroups in the Cremona group (long version)

    Full text link
    Let k be an algebraically closed field. We show that the Cremona group of all birational transformations of the projective plane P^2 over k is not a simple group. The strategy makes use of hyperbolic geometry, geometric group theory, and algebraic geometry to produce elements in the Cremona group that generate non trivial normal subgroups.Comment: With an appendix by Yves de Cornulier. Numerous but minors corrections were made, regarding proofs, references and terminology. This long version contains detailled proofs of several technical lemmas about hyperbolic space

    Microwave probes Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas

    Full text link
    We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.Comment: PACS: 03.67.-a, 32.80.Ee, 32.30.-

    Sulfonylative Hiyama Cross-Coupling: Development and Mechanistic Insights

    Get PDF
    International audienceDue to distinctive structural and electronic features, sulfones have attracted a particular attention over the pa st few decades, ma king it a widespread functional group.[1] Present in many contemporary pharmaceuticals and agrochemicals, they are also used as essential intermediates in organic synthesis. Therefore, numérous methodologies have been developed for their preparation. [1] However, the most common methods suffer from significant limitations with harsh reaction conditions or regioselectivity issues. Recently, the insertion of a molecule of sulfur dioxide between two partners was investigated and reactions involving organomagnesium,[2a] organozind2b] and organoboron[2c] compounds were reported. Herein we report a direct single-step palladium-catalyzed synthesis of sulfones involving organosilanes, sulfur dioxide and organohalides. Different mechanistic pathways were envisaged and discussed both from an experimental and theoretical stand point

    The extended halo of NGC 2682 (M 67) from Gaia DR2

    Full text link
    Context: NGC 2682 is a nearby open cluster, approximately 3.5 Gyr old. Dynamically, most open clusters should dissolve on shorter timescales, of ~ 1 Gyr. Having survived until now, NGC 2682 was likely much more massive in the past, and is bound to have an interesting dynamical history. Aims: We investigate the spatial distribution of NGC 2682 stars to constrain its dynamical evolution, especially focusing on the marginally bound stars in the cluster outskirts. Methods: We use Gaia DR2 data to identify NGC 2682 members up to a distance of ~150 pc (10 degrees). Two methods (Clusterix and UPMASK) are applied to this end. We estimate distances to obtain three-dimensional stellar positions using a Bayesian approach to parallax inversion, with an appropriate prior for star clusters. We calculate the orbit of NGC 2682 using the GRAVPOT16 software. Results: The cluster extends up to 200 arcmin (50 pc) which implies that its size is at least twice as previously believed. This exceeds the cluster Hill sphere based on the Galactic potential at the distance of NGC 2682. Conclusions: The extra-tidal stars in NGC 2682 may originate from external perturbations such as disk shocking or dynamical evaporation from two-body relaxation. The former origin is plausible given the orbit of NGC 2682, which crossed the Galactic disk ~40 Myr ago.Comment: 9 pages, 5 figures, accepted for publication on A&

    A characterization of compact complex tori via automorphism groups

    Full text link
    We show that a compact Kaehler manifold X is a complex torus if both the continuous part and discrete part of some automorphism group G of X are infinite groups, unless X is bimeromorphic to a non-trivial G-equivariant fibration. Some applications to dynamics are given.Comment: title changed, to appear in Math. An

    Morphology of axisymmetric vesicles with encapsulated filaments and impurities

    Full text link
    The shape deformation of a three-dimensional axisymmetric vesicle with encapsulated filaments or impurities is analyzed by integrating a dissipation dynamics. This method can incorporate systematically the constraint of a fixed surface area and/or a fixed volume. The filament encapsulated in a vesicle is assumed to take a form of a rod or a ring so as to imitate cytoskeletons. In both cases, results of the shape transition of the vesicle are summarized in phase diagrams in the phase space of the vesicular volume and a rod length or a ring radius. We also study the dynamics of a vesicle with impurities coupled to the membrane curvature. The phase separation and the associated shape deformation in the early stage of the dynamical evolution can well be explained by the linear stability analysis. Long runs of simulation demonstrate the nonlinear coarsening of the wavy deformation of the vesicle in the late stage.Comment: 9 pages, 9 figure
    corecore