6,829 research outputs found

    Hydrogen solubility in zirconium intermetallic second phase particles

    Full text link
    The enthalpies of solution of H in Zr binary intermetallic compounds formed with Cu, Cr, Fe, Mo, Ni, Nb, Sn and V were calculated by means of density functional theory simulations and compared to that of H in {\alpha}-Zr. It is predicted that all Zr-rich phases (formed with Cu, Fe, Ni and Sn), and those phases formed with Nb and V, offer lower energy, more stable sites for H than {\alpha}-Zr. Conversely, Mo and Cr containing phases do not provide preferential solution sites for H. In all cases the most stable site for H are those that offer the highest coordination fraction of Zr atoms. Often these are four Zr tetrahedra but not always. Implications with respect to H-trapping properties of commonly observed ternary phases such as Zr(Cr,Fe)2, Zr2(Fe,Ni) and Zr(Nb,Fe)2 are also discussed.Comment: manuscript accepted for publication in Journal of Nuclear Materials (2013

    Russian approaches to energy security and climate change: Russian gas exports to the EU

    Get PDF
    The proposition that EU climate policy represents a threat to Russia’s gas exports to the EU, and therefore to Russia’s energy security, is critically examined. It is concluded that whilst the greater significance of climate-change action for Russian energy security currently lies not in Russia’s own emissions reduction commitments but in those of the EU, an even greater threat to Russia’s energy security is posed by the development of the EU internal gas market and challenges to Russia’s participation in that market. However, the coming decades could see Russia’s energy security increasingly influenced by climate-change action policies undertaken by current importers of Russian gas such as the EU, and potential importers such as China and India. The challenge for Russia will be to adapt to developments in energy security and climate-change action at the European and global levels

    No rapid audiovisual recalibration in adults on the autism spectrum

    Get PDF
    Autism spectrum disorders (ASD) are characterized by difficulties in social cognition, but are also associated with atypicalities in sensory and perceptual processing. Several groups have reported that autistic individuals show reduced integration of socially relevant audiovisual signals, which may contribute to the higher-order social and cognitive difficulties observed in autism. Here we use a newly devised technique to study instantaneous adaptation to audiovisual asynchrony in autism. Autistic and typical participants were presented with sequences of brief visual and auditory stimuli, varying in asynchrony over a wide range, from 512 ms auditory-lead to 512 ms auditory-lag, and judged whether they seemed to be synchronous. Typical adults showed strong adaptation effects, with trials proceeded by an auditory-lead needing more auditory-lead to seem simultaneous, and vice versa. However, autistic observers showed little or no adaptation, although their simultaneity curves were as narrow as the typical adults. This result supports recent Bayesian models that predict reduced adaptation effects in autism. As rapid audiovisual recalibration may be fundamental for the optimisation of speech comprehension, recalibration problems could render language processing more difficult in autistic individuals, hindering social communication

    Comprehensive Uncertainty Quantification in Nuclear Safeguards

    Get PDF
    Nuclear safeguards aim to confirm that nuclear materials and activities are used for peaceful purposes. To ensure that States are honoring their safeguards obligations, quantitative conclusions regarding nuclear material inventories and transfers are needed. Statistical analyses used to support these conclusions require uncertainty quantification (UQ), usually by estimating the relative standard deviation (RSD) in random and systematic errors associated with each measurement method. This paper has two main components. First, it reviews why UQ is needed in nuclear safeguards and examines recent efforts to improve both top-down (empirical) UQ and bottom-up (first-principles) UQ for calibration data. Second, simulation is used to evaluate the impact of uncertainty in measurement error RSDs on estimated nuclear material loss detection probabilities in sequences of measured material balances

    Making progression and award decisions

    Get PDF
    corecore