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Nuclear safeguards aim to confirm that nuclear materials and activities are used for peaceful purposes. To ensure that States are
honoring their safeguards obligations, quantitative conclusions regarding nuclear material inventories and transfers are needed.
Statistical analyses used to support these conclusions require uncertainty quantification (UQ), usually by estimating the relative
standard deviation (RSD) in random and systematic errors associated with each measurement method. This paper has two main
components. First, it reviews why UQ is needed in nuclear safeguards and examines recent efforts to improve both top-down
(empirical) UQ and bottom-up (first-principles) UQ for calibration data. Second, simulation is used to evaluate the impact of
uncertainty in measurement error RSDs on estimated nuclear material loss detection probabilities in sequences of measured
material balances.

1. Introduction

Nuclear material accounting (NMA) provides a quantitative
basis to detect nuclear material loss or diversion at declared
nuclear facilities. NMA involves periodicallymeasuring facil-
ity input transfers 𝑇in, output transfers 𝑇out, and physical
inventory 𝐼 to compute a material balance (MB) defined for
balance period 𝑗 as MB𝑗 = (𝐼𝑗−1 + 𝑇in,𝑗 − 𝑇out,𝑗) − 𝐼𝑗, where(𝐼𝑗−1 + 𝑇in,𝑗 − 𝑇out,𝑗) is the book inventory. In NMA, one
MB or a collection of MBs are tested for the presence of
any statistically significant large differences and/or for trends,
while allowing for random and systematic errors in variance
propagation to estimate the measurement error standard
deviation of MB𝑗, 𝜎MB𝑗 . Similarly, in verification activities
done by an inspector, paired operator and inspector data
are tested for any large differences and/or for trends [1, 2].
Therefore, both material balance evaluation and verification
activities require statistical analyses, which require UQ.

In metrology for nuclear safeguards, the term “uncer-
tainty” characterizes the dispersion of estimates of a quantity
known as the measurand, which is typically the amount of
NM (such as U or Pu) in an item. To measure the amount

of NM, both destructive analysis (DA, a sample of item
material is analyzed by mass spectrometry in an analytical
chemistry laboratory) and nondestructive assay (NDA, an
item is assayed by using a neutron or gamma detector)
are used. NDA uses calibration and modeling to infer NM
mass on the basis of radiation particles, such as neutrons
and gammas emitted by the item and registered by detec-
tors. For any measurement technique, one can use a first-
principles physics-based or “bottom-up” approach to UQ by
considering each key step and assumption of the particular
method. Alternatively, one can take an empirical or “top-
down” approach to UQ, for example, by comparing assay
results on the same or similar items by multiple laboratories
and/or calibration periods.

A well-known guide for bottom-up UQ is the Guide
to the Expression of Uncertainty in Measurement (GUM,
[3]). The GUM also briefly mentions top-down UQ in the
context of applying analysis of variance (ANOVA, [4]) to data
from interlaboratory studies. Although the GUM is useful,
it is being revised because it has known limitations [5–7].
For example, the GUM provides little technical guidance
regarding calibration as a type of bottom-upUQ or regarding
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top-down UQ [5–8]. The GUM also mixes Bayesian with
non-Bayesian concepts. In a Bayesian approach, all quan-
tities, including the true measurand value, are regarded as
random. In a non-Bayesian (frequentist) approach, some
quantities are regarded as random and other quantities, such
as the true value of the measurand, are regarded as unknown
constants. This paper uses both Bayesian and non-Bayesian
concepts but specifies when each is in effect. For example, in
the Bayesian approach to top-down UQ in Section 3, the true
RSD values are regarded as being random.

In NDA safeguards applications, the facility operator
declares theNMmass of each item.Then, some of those items
are randomly selected for NDA verification measurement by
inspectors. This is a challenging NDA application because
often the detector is brought to the facility where ambient
conditions can vary over time and because the items to be
assayed are often heterogeneous in some way and/or are
different from the items that were used to calibrate/validate
and assess uncertainty in the NDA method. Because of such
challenges, “dark uncertainty” [9] can be large, as is evident
whenever bottom-up UQ predicts smaller measurement
error RSDs than are observed in top-down UQ [1]. The RSD
of an assay method is often defined as the reproducibility
standard deviation as estimated in an interlaboratory com-
parison. As shown in Section 3, comparing NDA verification
measurements to the operator’s DA measurements can be
regarded as a special case of an interlaboratory evaluation
[10–12].

For top-down UQ applied to NM measurements of the
same item by both the operator (often using DA) and the
inspector (often using NDA), this paper describes an existing
and a new approach to separately estimate operator and
inspector systematic and random error variance components.
Systematic and random error components must be separated
because their modes of propagation are different (Section 4).
Currently, random error variance estimates (from paired
data) are based on Grubbs’ estimator or variations of Grubbs’
estimator, which was originally developed by Grubbs to
estimate random error variance separately for each of the
two methods applied to each of several items, without
repetition of measurement by either method [13, 14]. In
Section 3, Grubbs’ estimator, constrained versions of Grubbs’
estimator, and a Bayesian alternative [7] are described;
the Bayesian option easily allows for parameter constraints
and prior information regarding the relative magnitudes of
variance components to be exploited to improve top-down
UQ.

This paper is organized as follows. Section 2 provides a
background on bottom-upUQ for NDA, describes a gamma-
based NDA example and a neutron-based NDA example,
and illustrates why simulation is necessary for improved
UQ for calibration data. Section 3 reviews currently used
top-down UQ and describes a new Bayesian option [7]
that applies approximate Bayesian computation. Section 4
provides a new simulation study assessing the sensitivity
of estimated NM loss detection probabilities to estimation
errors in measurement error RSDs. Section 5 concludes with
a summary.

2. Bottom-Up UQ

For bottom-up UQ, the GUM [3] assumes that the measured
value can be expressed using a measurand equation that
relates input quantities (data collected during the measure-
ment process and relevant fundamental nuclear data such as
attenuation corrections) to the output (the finalmeasurement
value). The GUM’s main technical tool is a first-order Taylor
approximation applied to the measurand equation𝑌 = 𝑓 (𝑋1, 𝑋2, . . . , 𝑋𝑁) , (1)

which relates input quantities 𝑋1, 𝑋2, . . . , 𝑋𝑁 (regarded as
random) to the measurand Y (also regarded as random).The
input quantities can include estimates of other measurands
or of calibration parameters, so (1) is quite general. The
variance of each 𝑋 and 𝜎2𝑖 and any covariances, 𝜎𝑖𝜎𝑗𝜌𝑖,𝑗,
between pairs of 𝑋’s are then propagated using the Tay-
lor approximation to obtain 𝜎2𝑌 ≈ ∑𝑁𝑖=1(𝜕𝑓/𝜕𝑥𝑖)2𝜎2𝑖 +2∑𝑁−1𝑖=1 ∑𝑁𝑗=𝑖+1(𝜕𝑓/𝜕𝑥𝑖)(𝜕𝑓/𝜕𝑥𝑗)𝜎𝑖𝜎𝑗𝜌𝑖,𝑗 (or using simulation
if the Taylor approximation is not sufficiently accurate) to
estimate the variance in 𝑌, 𝜎2𝑌.

According to (1), the estimated value 𝑌 of the measurand
is a random variable, regardless of whether the left side of (1)
is expressed as Y (as in a typical Bayesian approach) or as 𝜇𝑌
(as in a typical non-Bayesian setting). The hat notation is a
frequentist convention for denoting an estimator, so 𝜇𝑌 is an
estimate of 𝜇𝑌, and 𝜇𝑌 (which is also denoted as 𝑦𝑇, where
“T” denotes the true value) denotes the unknown true value
of the measurand.

2.1. Calibration UQ as an Example of Bottom-Up UQ. Typi-
cally, calibration is performed using reference materials hav-
ing nominal measurand values (known to within a relatively
small uncertainty), and then, in the case of linear calibration,
(1) can be reexpressed as 𝜇𝑌 = 𝛽𝑂 + 𝛽1𝑋, where 𝜇𝑌 is the
estimated measurand value, 𝛽0 and 𝛽1 are parameters esti-
mated from calibration data, 𝑋 is the net count rate (usually
the net gamma or net neutron count rate in NDA; see
Section 2.3), and the three inputs in mapping to (1) are 𝑋1 =𝛽0,𝑋2 = 𝛽1, and𝑋3 = 𝑋.The estimates 𝛽0 and 𝛽1 will vary in
predictable ways (Sections 2.2 and 2.3) across repeats of the
calibration.

The convention in statistical literature to reverse the roles
of 𝑋 and 𝑌 from that in GUM’s equation (1) will be followed
here, so𝑋 denotes the quantity to be inferred (themeasurand
value) and 𝑌 denotes the detected net radiation count rate.
Then, in the case of reverse regression (see below), (1) can be
expressed as 𝑋 = 𝑔 (𝑌1, 𝑌2, . . . , 𝑌𝑁) = 𝛼̂0 + 𝛼̂1𝑌, (2)

identifying 𝑌1 = 𝛽0, 𝑌2 = 𝛽1, and 𝑌3 = 𝑌. Following calibra-
tion on data consisting of 𝑛 (𝑥𝑖, 𝑦𝑖) pairs (lowercase denotes
observed value of a random variable), the three “input
quantities” 𝑌1 = 𝛽0, 𝑌2 = 𝛽1, and 𝑌3 = 𝑌 have variances
and covariances that can be estimated. However, in most
applications of calibration in NDA, accurate estimation of
these variances and covariances requires simulation because
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analytical approximations as described in Section 2.2 have
been shown to be inadequate (see Section 2.3).

Expressing (2) as 𝑋 = 𝑔(𝑌1, 𝑌2, . . . , 𝑌𝑁) = 𝛼̂0 + 𝛼̂1𝑌
indicates how the estimate 𝑋 is computed and how to assign
systematic and random error variances to 𝑋. For example,
and to introduce notation used in top-down UQ (Section 3),
one could express the estimate as 𝑋 = 𝜇𝑋 + 𝑆 + 𝑅, where 𝜇𝑋
denotes the true value of themeasurand, S denotes systematic
error due to estimation error in the fitted slope and intercept
and/or due to correlations among the inputs, and 𝑅 denotes
random error. If there are no correlations among the inputs
but only estimation error in the fitted slope and intercept
during calibration, then expressions for the variances of 𝑆 and
R, denoted as 𝜎2𝑆 and 𝜎2𝑅, respectively, can be given (Sections
2.3 and 3), which allow comparison between bottom-up UQ
and top-down UQ. The GUM does not discuss calibration
in much detail; instead, the GUM applies propagation of
variance to the steps modeled in (1), which sometimes leads
to a defensible estimate of the combined variances of 𝑆 and𝑅. The GUM does not attempt to separately estimate the
variances of 𝑆 and R, but such separation is needed in some
applications, such as assigning an uncertainty to a sum of
measurand estimates ([15] and Section 4).

2.2. Extension of Standard Regression Results to Calibration.
One way to express that the net count rate depends on the
true measurand value is𝑌 = 𝛽0 + 𝛽1𝑋True + 𝑅𝑌, (3)

which is a typical model used in regression when there
is negligible error in 𝑋. If errors in predictors cannot be
ignored, (3) should be modified; however, one can still
regress measured 𝑌 on measured X, so, in effect, (3) can be
reexpressed as 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝑅̃𝑌, where the tildes denote
that parameter values and the randomerror are different from
those in (3).

In inverse calibration, (3) is used, and one inverts the
fitted model using 𝛽0 and 𝛽1 to use future measured 𝑦test to
predict enrichment using

𝑥test = 𝑦test − 𝛽0𝛽1 , (4)

which is regression followed by inversion. An alternative
model to (3) is reverse calibration:𝑋 = 𝛼0 + 𝛼1𝑌True + 𝑅𝑋. (5)

In reverse calibration, (5) expresses the measurand 𝑋 as a
function of the true net count rate 𝑦𝑇, but in practice one
must regress 𝑋 on 𝑌 = 𝑌true + 𝑅𝑌, where 𝑅𝑌 is a random
error. As an aside, this paper does not consider models with
systematic errors such as 𝑋 = 𝑋True + 𝑅𝑋 + 𝑆𝑋 or 𝑌 =𝑌true + 𝑅𝑌 + 𝑆𝑌. Cheng and Van Ness [16] point out that any
additive systematic errors in 𝑋 or 𝑌 could be absorbed into𝛽0 and 𝛼0, respectively; however, any systematic errors in the𝑋 values used for calibration would remain a part of the total
uncertainty.

Both inverse and reverse calibrations involve ratios of
random variables, which can be problematic [7, 17]. In
inverse calibration, the solution in (4) involves division by the
random variable 𝛽1, which has a normal distribution under
typical modeling assumptions. Williams [18] notes that 𝑥test
in (4) has infinite variance even if the expected value of 𝛽1
is nonzero, due to division by a normal random variable
[19], and hence has infinite mean squared error, while the
reverse estimator has finite variance and mean squared error.
In reverse calibration, the least squares solution 𝑥𝑇 = 𝛼̂𝑦 ={𝑌𝑇cal𝑋cal/𝑌𝑇cal𝑌cal}𝑦 also involves division of random variables
(𝑋cal is the vector or matrix of 𝑋 values used in calibration
and 𝑌cal is the vector of 𝑌 values in calibration). Experience
suggests that one can develop adequate approximations for
the ratio of random variables when the ratio is almost
certain to be far from infinity or zero [19]. Ignoring errors in
predictors, [20] uses the following common approximation
for the variance of the ratio of random variables 𝑈 and V :

var(𝑈𝑉)
≈ (𝐸𝑈)2(𝐸𝑉)2 {var (𝑈)(𝐸𝑈)2 + var (𝑉)(𝐸𝑉)2 − 2 cov (𝑈, 𝑉)(𝐸𝑈) (𝐸𝑉)} , (6)

where𝐸 denotes expectation to derive the approximation (for
inverse calibration) for variance due to uncertainty in the
estimated calibration coefficients 𝛽0 and 𝛽1 and in the test
measurement 𝑌test:

var (𝑋) ≈ 1𝛽21 {𝜎2𝑅𝑌𝑛 + (𝑥test − 𝑥)2 𝜎2𝑅𝑌∑𝑛𝑖=1 𝑥2𝑖 } , (7)

where 𝑥𝑖 = 𝑥𝑖 − 𝑥 and 𝑥 is the mean of the 𝑥 values in the
calibration data. To apply (7), 𝛽21 and 𝜎2𝑅𝑌 are estimated from
the calibration data (assuming (3) in forward calibration or
the alternate version of (3), 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝑅̃𝑌). Equation
(7) is almost the same as the corresponding well-known
result for regression; the only differences are the swapping
of the roles for 𝑥 and y and the appearance of 𝛽21 in the
denominator. For reverse regression, [20] derives var(𝑥) ≈((∑𝑛𝑖=1 𝑥2𝑖 )/(𝑛 − 2)){1/𝑛 + (𝑦test − 𝑦)2/∑𝑛𝑖=1 𝑦2𝑖 }, where 𝑦𝑖 =𝑦𝑖 − 𝑦 and x̃𝑖 = 𝑥𝑖 − 𝑥. Reference [20] also showed the long-
term bias 𝐵inverse ≈ (𝑥 − 𝑥)𝜎2𝑅𝑌/𝛽21𝑆𝑥𝑥 for inverse calibration
and 𝐵reverse ≈ −(𝑥 − 𝑥)/(1 + 𝛽21𝑆𝑥𝑥/(𝑛 − 1)𝜎2𝑅𝑌) for reverse
calibration, where 𝑆𝑥𝑥 = ∑𝑛𝑖=1(𝑥𝑖 − 𝑥)2. Notice that 𝐵inverse
decreases as 𝑛 increases (because 𝑆𝑥𝑥 increase as 𝑛 increases),
but 𝐵reverse does not decrease as 𝑛 increases; however, recall
that, in NDA applications, n is small, usually 3 to 10.

A common summary performance measure of an esti-
mator combines squared bias and repeatability variance
defined as RMSE = (repeatability variance) + (bias)2; that is,
RMSE = √𝐸{𝑋 − 𝑋true}2 = √𝐸{𝑋 − 𝐸𝑋}2 + {𝐸𝑋 − 𝑋true}2,
where 𝐸 denotes the expected value (i.e., the first moment of
the underlying probability distribution) [7]. Some technical
details arise regarding the best model fitting approach if the
predictor𝑌 ismeasuredwith nonnegligible error. In addition,
there is controversy regarding the relative merits of inverse
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and reverse calibration [7, 17, 21, 22]. Simulation can be used
to choose between inverse and reverse calibration, because
simulation provides accurate UQ (such as RMSE estimation)
for both options. In simulations for NDA calibration, errors
in the standard reference materials’ nominal values (𝑋’s) are
usually small compared to errors in the instrument responses
Y ’s, which are possibly adjusted by using adjustment factors
that have uncertainty (see Section 2.3).

2.3. Summary of Recent NDA Examples. Recent publications
have used simulation to assess the adequacy of (7) in the
context of NMmeasurements by gamma detection [7, 17] and
neutron detection [1, 7, 23, 24].

2.3.1. Enrichment Meter Principle (EMP). The EMP aims to
infer the fraction of 235U in U (enrichment, defined as atom
percent of 235U in an item) bymeasuring the count rate of the
strongest-intensity direct (full-energy) gamma from decay of
235U,which is emitted at 185.7 keV [7, 25, 26].TheEMPmakes
three key assumptions: (1) the detector field of view into each
item is the same as that in the calibration items, (2) the item
is homogeneous with respect to both 235U enrichment and
chemical composition, and (3) the container attenuation of
gamma-rays is the same as or similar to that in the calibration
items, so empirical correction factors have modest impact
and are reasonably effective. If these three assumptions are
approximatelymet, the enrichment of 235U in theU is directly
proportional to the count rate of the 185.7 keV gamma-rays
emitted from the item. It has been shown empirically that,
under good measurement conditions, the EMP can have a
random error RSDof less than 0.5% and long-termbias of less
than 1% relative to the true value, depending on the specific
implementation of the EMP. Implementation details include
features such as the detector resolution, stability, and extent of
corrections needed to adjust items to calibration conditions.
However, in some EMP applications, the random error RSD
can be larger than bottom-upUQpredicts and larger than the
0.5% goal. For example, assay of the 235U mass in a stratum
of UO2 drums suggests that there is a larger-than-anticipated
random RSD [17].

2.3.2. Uranium Neutron Coincidence Collar (UNCL). The
UNCL uses an active neutron source to induce fission in
235U in fresh fuel assemblies [27]. Neutrons from fission are
emitted in short bursts of time and so exhibit non-Poisson
bursts in detected count rates. Neutron coincidence counting
is used to measure the “doubles” neutron coincident rate Y,
which can be used to estimate the linear density of 235U in
a fuel assembly (𝑔-235U/cm) using calibration parameters, 𝑎1
and 𝑎2.The coincident rate𝑌 is the observed rate of observing
two neutrons in very short time gates, each of approximately
10−6 sec, and is attributable to fission events. The equation
commonly used to convert the measured doubles rate 𝑌 to
an estimate of X (grams 235U per cm) is 𝑋 = 𝑘𝑌/(𝑎1 −𝑎2𝑘𝑌), where 𝑎1 and 𝑎2 are calibration parameters, and 𝑘 =𝑘0𝑘1𝑘2𝑘3𝑘4𝑘5 is a product of correction factors that adjust𝑌 to item-, detector-, and source-specific conditions in the
calibration [27]. Therefore, 𝑋 = 𝑘𝑌/(𝑎1 − 𝑎2𝑘𝑌) is a special

case of GUM’s equation (1) (with 𝑋 and 𝑌 reversed), where
the two calibration parameters 𝑎1 and 𝑎2 and the 6 correction
factors 𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4, and 𝑘5 are among𝑋’s in (1).

Reference [23] showed that calibration is most effective
(leading to smallest RMSE in 𝑋) if there is no adjust-
ment for errors in the predictor 𝑘𝑌 and that errors in𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4, and 𝑘5, in 𝑘 = 𝑘0𝑘1𝑘2𝑘3𝑘4𝑘5, should be
included in synthetic calibration data. Note that, by working
with 1/X and 1/Y, one can convert𝑋 = 𝑘𝑌/(𝑎1 −𝑎2𝑘𝑌) to one
that is linear in the transformed predictor 1/𝑌.
2.3.3. Main Results for Sections 2.3.1 and 2.3.2. The main
results for Sections 2.3.1 and 2.3.2 can be summarized in four
main points as follows.

(1) If possible, both classical (see (2)) and reverse (see (3))
regression methods should be compared; however, reverse
regression tends to do either as well as or better than classical
regression. Analytical approximations such as (7) have been
shown not to be sufficiently adequate in some settings, so
simulation is recommended to compare classical and reverse
regression and to estimate variance components in𝑋 = 𝜇𝑋 +𝑆 + 𝑅 (Section 3).

(2) Error sources that are expected to be present in test
measurements, such as container thickness measurements,
can be simulated in synthetic calibration data. Such error
sources often lead to item-specific biases (Burr et al., 2016).

(3) If reverse regression is used, then there is no need
to adjust for errors in the predictors 𝑌 in (3). If inverse
regression is used, then it is better to adjust for errors in
predictors.

(4) Figure 1 plots (a) the observed and predicted bias and
(b) the observed and predicted RMSE in a generic NDA
example involving either gamma or neutron counting. It is
not well known that calibration applications lead to bias, and
[7, 17] showed that the bias cannot be easily removed, because
measurement errors obscure the true measurand value and
hence the true bias. Note in Figure 1(a) that the observed
bias (in simulated data) is not in close agreement with the
predicted bias, which is obtained from the expressions in
Section 2.2. Therefore, long-term bias should be estimated
using simulation rather than relying on the approximate
expressions𝐵inverse ≈ (𝑥−𝑥)𝜎2𝑅𝑌/𝛽21𝑆𝑥𝑥 for inverse calibration
and 𝐵reverse ≈ −(𝑥 − 𝑥)/(1 + 𝛽21𝑆𝑥𝑥/(𝑛 − 1)𝜎2𝑅𝑌) for reverse
calibration, where 𝑆𝑥𝑥 = ∑𝑛𝑖=1(𝑥𝑖 − 𝑥)2. Similarly, Figure 1(b)
illustrates that the observed RMSE is not well predicted
by the expressions in Section 2.2, so, again, simulation is
needed for adequate estimation of the RMSE. Note that the
smallest RMSE is for reverse regression. Burr et al. [7, 17]
show that reverse regression tends to have smaller RMSE
than inverse regression but that if inverse regression is used,
then methods to adjust for errors in predictors should be
used.

Figure 1 summarizes the results of 105 simulations of 𝑌 =𝛽0 + 𝛽1𝑋True + 𝑅𝑌 = 1 + 0.1𝑋True + 𝑅𝑌 with 𝛿𝑋 = 0.01
and 𝛿𝑌 = 0.15, using 5 (𝑥, 𝑦) calibration pairs (with 𝑥 scaled
to lie in (0, 1), at 0, 0.25, 0.5, 0.75, and 1) and 10 testing
pairs as shown. All simulations in this paper are done in R
[25].
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Figure 1: Simulation results for both inverse and reverse regression for (a) the observed and predicted bias versus𝑋True and (b) the observed
and predicted RMSE versus𝑋True.

3. Top-Down UQ to Estimate
Variance Components

In facilities under international safeguards agreements,
inspectors measure randomly selected items to monitor for
possible data falsification by the operator that couldmaskNM
diversion [1, 28].These paired (𝑂, 𝐼) data (𝑂 denotes operator
measurement; 𝐼denotes inspectormeasurement) are assessed
using one-item-at-a-time testing to detect significant differ-
ences and also by using an average of the operator-inspector
values to detect trends in the context of material balance
evaluation [1]. Conclusions from such an assessment depend
on the assumed measurement error model and associated
random and systematic uncertainty components, so it is
important to perform effective UQ [1, 7, 17, 28].

The paired (𝑂, 𝐼) data are collected during relatively
short (one week) inspections that occur once or a few times
per year, and then several years of paired (𝑂, 𝐼) inspection
data are included in top-down UQ. The measurement error
modelmust account for variationwithin and between groups,
where, in this context, a group is an inspection period. A
typical top-down model used for additive errors for the
inspector (𝐼) (and similarly for the operator 𝑂) is𝐼𝑖𝑗 = 𝜇𝑖𝑗 + 𝑆𝐼𝑖 + 𝑅𝐼𝑖𝑗, (8)

where 𝐼𝑖𝑗 is the inspector’s measured value of item 𝑗 (from 1
to 𝑛) in group 𝑖 (from 1 to 𝑔), 𝜇𝑖𝑗 is the true but unknown
value of item 𝑗 from group 𝑖, 𝑅𝐼𝑖𝑗 ∼ 𝑁(0, 𝜎2𝑅𝐼) is a random
error on item 𝑗 from group 𝑖, and 𝑆𝐼𝑖 ∼ 𝑁(0, 𝜎2𝑆𝐼) is a short-
term systematic error in group 𝑖 [28]. The error variance
components 𝜎2𝑆𝐼 and 𝜎2𝑅𝐼 can be estimated using a specialized
version of random-effects one-way ANOVA described in
Section 3.1. NDAmeasurements oftenhave larger uncertainty
at larger true values, which implies a multiplicative rather
than an additive error model. However, provided that the
individual RSDs are fairly small, resulting in a total RSD of
approximately 10% or less, a multiplicative error model such
as 𝐼𝑖𝑗 = 𝜇𝑖𝑗(1 + 𝑆𝐼𝑖 + 𝑅𝐼𝑖𝑗) can be analyzed in the same
manner as an additive error model, by analyzing on the log
scale [1, 2].Therefore, for brevity, only an additive errormodel
such as in (8) is presented here. Bonner et al. [1] provide new

expressions for a multiplicative error model that should be
used if the total RSD is approximately 10% or larger. Note
that one could write (8) in more cluttered notation as 𝑌𝐼𝑖𝑗 =𝜇𝑖𝑗 + 𝑆𝐼𝑖 + 𝑅𝐼𝑖𝑗. That is, 𝐼𝑖𝑗 is the inspector’s measured value of
item 𝑗, which is obtained using various inputs, denoted with𝑋’s on the right side of (1). And one could also consider other
errormodels, such as errormodels that allow for nonconstant
absolute or relative random and/or systematic SD [28, 29].

The GUM [3] briefly describes ANOVA in the context
of top-down UQ using measurement results from multiple
laboratories and/or assay methods to measure the same
measurand; however, the GUM is mostly concerned with
bottom-up UQ. The GUM does not explicitly present any
measurement error models such as (8) but only considers the
model for the measurand, (1). However, the GUM implicitly
endorses the notion of a measurement error model (or
“observation equation,” [14]) such as (8) in its top-down
UQ. Note that if total measurement error is partitioned into
random and systematic components, then the variance of a
sum of 𝑛 measured NM values (which is often needed in
safeguards assessments; see Section 4) is 𝑛2𝜎2𝑆𝐼 + 𝑛𝜎2𝑅𝐼 for an
additive model such as (8).

To illustrate, Figure 2 plots 𝑑 = 𝑂−𝐼 data simulated from
(8) with 𝑛 = 10, 𝑔 = 5, 𝜎𝑅𝑂 = 1, 𝜎𝑆𝑂 = 0.1, 𝜎𝑅𝐼 = 3, 𝜎𝑆𝐼 =1, 𝜇True = 100, and the standard deviation of the true values,𝜎𝜇 = 1. The horizontal lines depict the five group means.
Equation (8) implies that there is a need to partition error
variance of 𝑑 into “between” (B) and “within” (W) groups, as
in
𝑔∑
𝑖=1

𝑛∑
𝑗=1

(𝑑𝑖𝑗 − 𝑑)2 = 𝑔∑
𝑖=1

𝑛∑
𝑗=1

(𝑑𝑖𝑗 − 𝑑𝑖)2 + 𝑛 𝑔∑
𝑖=1

(𝑑𝑖 − 𝑑)2
= SSW + SSB. (9)

3.1. Grubbs’ Estimator as an Example of Top-DownUQ to Esti-
mate 𝜎2𝑅𝑂, 𝜎2𝑆𝑂, 𝜎2𝑅𝐼, 𝜎2𝑆𝐼. Standard random-effects ANOVA
[4] requires repeated measurements on some items in order
to estimate 𝜎2𝑅𝐼 and then 𝜎2𝑆𝐼 in data assumed to be produced
by a model such as (8). However, for most (𝑂, 𝐼) data,
repeated measurements of the same item are not available, so
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Figure 2: Values of 𝑑 = 𝑂−𝐼 in data simulated from (7) with 𝑛 = 10,𝑔 = 5, 𝜎𝑅𝑂 = 1, 𝜎𝑆𝑂 = 0.1, 𝜎𝑅𝐼 = 3, 𝜎𝑆𝐼 = 1, 𝜇True = 100, and the
SD of the true values 𝜎𝜇 = 1.
this section describes Grubbs’ estimator. Grubbs’ estimator
was developed for situations in which more than one mea-
surement method is applied to each of multiple test items
(which may contain different material amounts), but there
is no replication of measurements by any of the methods.
Grubbs’ estimator will be described for additive measure-
ment error models; a new version of Grubbs’ estimator for
multiplicative error models is described in [1]. Note that
the variance 𝜎2𝑅𝐼 of the random error variance component𝑅𝐼𝑖𝑗 includes the effects of “item-specific” bias (see Section 2,
[7, 28]), which could not be estimated if available data were
only from repeatedmeasurements of the same or very similar
items. Note also that Grubbs’ estimator does not consider the
possibility of falsification by the operator, so it is intended
to be applied to paired (𝑂, 𝐼) data that has no evidence of
falsification.

The basis of Grubbs’ estimator within one group to
estimate 𝜎2𝑅𝑂 and 𝜎2𝑅𝐼 is that the covariance between operator
and inspector measurements equals the variance of the true
item masses, 𝜎2𝜇, while the variance of 𝐼, 𝜎2𝐼 , conditional on
the value of 𝑆 is given by 𝜎2𝐼 = 𝜎2𝜇 + 𝜎2𝑅𝐼. Therefore, the
sample covariance within a single inspection period between
operator and inspector measurements can be subtracted
from the sample variance of the inspector measurements to
estimate𝜎2𝑅𝐼 (and similarly for estimating𝜎2𝑅𝑂).That is, within
one inspection period (group) (lowercase 𝑖(𝑜) denotes the
observed values of 𝐼(𝑂)), Grubbs’ estimator is given by

𝜎̂2𝑅𝐼 = 1𝑛 − 1 {{{
𝑛∑
𝑗=1

(𝑖𝑗 − 𝑖)2 − 𝑛∑
𝑗=1

(𝑜𝑗 − 𝑜) (𝑖𝑗 − 𝑖)}}} . (10)

The estimates from (10) from each of the 𝑔 groups are
averaged to get the final estimate of the inspector’s random
error variance, and similarly, the estimate of 𝜎2𝜇 is the average
of the sample covariances 𝜎̂2𝜇 = ∑𝑛𝑗=1(𝑜𝑗 − 𝑜)(𝑖𝑗 − 𝑖)/(𝑛 − 1)
computed within each group.

To estimate 𝜎2𝑆𝐼 in (7), a minor extension of stan-
dard random-effects ANOVA to account for 𝜎2𝜇 shows that𝐸{∑𝑔𝑗=1 𝑛(𝐼𝑗 − 𝐼)2/(𝑔 − 1)} = 𝜎2𝑅𝐼 + 𝜎2𝜇 + 𝑛𝜎2𝑆𝐼, so a method-of-

moments-based estimate of 𝜎2𝑆𝐼 is 𝜎̂2𝑆𝐼 = (∑𝑔𝑗=1(𝑖𝑗 − 𝑖)2)/(𝑔 −1) − (𝜎̂2𝑅𝐼 + 𝜎̂2𝜇)/𝑛. There is no guarantee that 𝜎̂2𝑅𝐼 or 𝜎̂2𝑆𝐼
are nonnegative, but the corresponding true quantities are
nonnegative (i.e., 𝜎2𝑅𝐼 ≥ 0 and 𝜎2𝑆𝐼 ≥ 0), so constrained
versions of Grubbs-based and ANOVA-based estimators can
be used (Section 3.2, [7, 30]).

Grubbs showed (and simulation in R [25] also verified)
that his estimator for 𝜎2𝑅𝐼 has variance 𝜎2𝜎2𝑅𝐼 = 2𝜎4𝑅𝐼/(𝑛 − 1) +(1/(𝑛 − 1))(𝜎2𝑅𝑂𝜎2𝑅𝐼 + 𝜎2𝑅𝑂𝜎2𝜇 + 𝜎2𝑅𝐼𝜎2𝜇), which is relatively large,
particularly if𝜎2𝜇 is comparable inmagnitude to𝜎2𝑅𝐼 [7] and/or𝑛 is small, so [13] proposed an option tomitigate the impact of𝜎2𝜇 on 𝜎2𝜎2𝑅𝐼 . The method in [13] relied on knowing the value,
or approximate value of 𝜎2𝑅𝐼/𝜎2𝜇, and studied the sensitivity
to misspecifying the ratio 𝜎2𝑅𝐼/𝜎2𝜇. The Bayesian option in
Section 3.2 specifies a probability distribution for 𝜎2𝑅𝐼/𝜎2𝜇
prior to observing the (𝑂, 𝐼) data, as an example of enforcing
nonnegativity constraints and including prior information,
such as information from bottom-up UQ regarding 𝜎2𝜇, 𝜎2𝑅𝐼,
and/or𝜎2𝑆𝐼, and similarly for the operator or for variance ratios
such as 𝜎2𝑅𝐼/𝜎2𝑅𝑂.

Ameasurement errormodel that can be used in top-down
UQ for the type of data in Figure 2 was given in (8). In the
case of inverse regression as a type of bottom-up UQ, using
(5), one can modify the top-down error model of (8) to𝐼𝑖𝑗 = 𝜇𝑖𝑗 + 𝑆1𝐼𝑖 + 𝑆2𝐼𝑖 + 𝑅𝐼𝑖𝑗, (11)

where 𝑅 ∼ 𝑁(0, 𝜎2𝑅) (𝜎2𝑅 is random error variance that
includes the effects of errors in 𝑋 and 𝑌); 𝑆1 = 𝛼̂0 − 𝛼0 (an
additive subcomponent of systematic error; see below), and𝑆2 = (𝛼̂1 − 𝛼1)(𝑌Test − 𝑦) (a multiplicative subcomponent of
systematic error).

Assume that inverse regression is performed usingmean-
centered data (𝑥 = 𝑥 − 𝑥train and 𝑦 = 𝑦 − 𝑦train), so
cov(𝛼̂0, 𝛼̂1) = 0, which simplifies interpretation.The equation𝑆1 = 𝛼̂0−𝛼0 is then interpreted tomean that 𝑆1 hasmean zero
and variance 𝜎2𝑅/𝑛. Note that one cannot use paired (𝑂, 𝐼)
data to estimate 𝜎2𝑆1 and 𝜎2𝑆2, because the effects of 𝜎2𝑆1 and𝜎2𝑆2 are confounded. However, simulation such as that used
to produce Figure 1 provides a way to perform bottom-up
prediction of top-down SD (or RSD) that can be compared
to the SD (or RSD) observed in top-down evaluations. If
the bottom-up predicted SD agrees well with that observed
in top-down (𝑂, 𝐼) data, then bottom-up UQ via simulation
(because analytical approximations such as those plotted in
Figure 1 in the calibration context have been shown to not be
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Figure 3: The estimated probability density of Grubbs’ estimator
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or generalized lambda (thin tail or thick tail) distribution. The true
value of 𝜎𝑅𝑂 is 0.0111, indicated by the vertical line.

sufficiently accurate) can separately estimate 𝜎2𝑆1 and 𝜎2𝑆2, or,
if fitting a zero-intercept model, (8) could be modified to a
multiplicative error model, 𝐼𝑖𝑗 = 𝜇𝑖𝑗(1 + 𝑆𝐼𝑖 + 𝑅𝐼𝑖𝑗), where𝑆𝐼 = (𝛼̂1−𝛼1)(𝑌Test−𝑦), againwith the variance of 𝑆𝐼 estimated
by simulation [7, 17, 31].

3.2. New Bayesian Approach to Grubbs-Type Estimation. Re-
call that the variance of Grubbs’ estimator can be large, so
[7, 31] review alternatives to Grubbs’ estimator based on
constrained optimization, such as Jaech’s [31] constrained
maximum likelihood estimator (CMLE), which assumes that
the random and systematic measurement errors are normally
distributed. Also, although the impact of 𝜎2𝜇 can be relatively
large on Grubbs’ estimator, versions of Grubbs’ estimators
that are constrained so that 𝜎̂2𝑅𝐼 + 𝜎̂2𝑅𝑂 = 𝜎̂2𝑑, where 𝜎̂2𝑑 is
the sample variance of the differences 𝑑 = 𝑂 − 𝐼, have
exhibited lower RMSE than Grubbs’ estimator in limited
testing to date. Any estimator of 𝜎2𝑅𝑂 , 𝜎2𝑅𝐼 , 𝜎2𝑆𝑂 , and 𝜎2𝑆𝐼 must
be accompanied by its respective uncertainty.Theuncertainty
in CMLE or constrained least squares estimators [32] can
be approximated using approximate analytical results and
asymptotic results or by resampling methods such as the
bootstrap. The quality of such approximations is not yet
known; so a Bayesian alternative is presented here which does
not rely on such approximations or the bootstrap for assessing
uncertainty in 𝜎̂2𝑅𝑂 , 𝜎̂2𝑅𝐼 , 𝜎̂2𝑆𝑂 , or 𝜎̂2𝑆𝐼 .

Another reason to consider the Bayesian alternative is
that Grubbs’ estimator exhibits dependence on the under-
lying measurement error distribution. Figure 3 plots the
estimated probability density for Grubbs’ estimator for 𝜎̂𝑅𝑂,
when the underlying random error distribution is either the

normal, lognormal, or generalized lambda with thin or thick
tails, for the relatively large sample size of 5 groups and 10
measurements per group.The probability density for 𝜎̂𝑅𝑂was
estimated using a kernel-density estimator in R [25]. There
is a relatively large uncertainty in 𝜎̂𝑅𝑂 (Section 4 evaluates
one impact of uncertainty in estimated RSDs), with an RSD
in 𝜎̂𝑅𝑂 of 11%, 8%, 13%, and 37%, respectively, for the four
distributions in Figure 3, and an RSD in 𝜎̂𝑆𝑂 of approximately
50% for all four distributions; also, for 2 groups and 5
measurements per group, the RSD in 𝜎̂𝑅𝑂 is approximately
50% for all four distributions. One implication of Figure 3 is
that uncertainties in 𝜎̂2𝑅𝑂 , 𝜎̂2𝑅𝐼 , 𝜎̂2𝑆𝑂 , or 𝜎̂2𝑆𝐼 depend on the error
distributions. An advantage of the Bayesian option is that
the width of the Bayesian posterior adjusts to accommodate
nonnormal underlying distributions [7].

One option to improve Grubbs’ estimator is to impose
constraints, such as 𝜎𝑅𝑂 ≤ 𝜎𝑅𝐼, or, more flexibly, by assigning
a prior probability to the ratio 𝜎𝑅𝑂/𝜎𝑅𝐼 which puts most
of the probability on values less than 1. The uncertainty in
constrained estimators is simple to estimate in a Bayesian
approach and is often difficult to estimate in a non-Bayesian
framework. Within an inspection group for fixed 𝑆𝑂 and 𝑆𝐼,
the paired (𝑂, 𝐼) data from (8) has a bivariate distribution

with covariance matrix Σ𝑊 = ( 𝜎2𝜇+𝜎2𝑅𝑂 𝜎2𝜇
𝜎2𝜇 𝜎

2
𝜇+𝜎
2
𝑅𝐼

) and [33]

provided a Bayesian approach to estimate 𝜎2𝜇, 𝜎2𝑅𝑂 , and 𝜎2𝑅𝐼 ,
assuming a bivariate normal likelihood, without imposing
constraints on any of the variance ratios. In principle, one
could extend the Bayesian approach in [33] to allow for
a nonnormal likelihood and/or to allow for constraints on
any of the variance ratios. In practice, such extensions are
technically difficult and rarely attempted.

In any Bayesian approach, prior information regarding
the sizes or relative sizes of 𝜎2𝜇, 𝜎2𝑅𝑂 , and 𝜎2𝑅𝐼 must be provided.
If the prior is “conjugate” for the likelihood, then the posterior
is in the same likelihood family as the prior, in which
case analytical methods are available to compute posterior
prediction intervals for quantities of interest, so that a wide
variety of priors and likelihoods can be accommodated;
modern Bayesian methods do not rely on conjugate priors
but use numerical methods to obtain samples of 𝜎2𝜇, 𝜎2𝑅𝑂 ,
and 𝜎2𝑅𝐼 from their approximate posterior distributions [34].
For numerical methods such as Markov Chain Monte Carlo,
the user must specify a prior distribution for 𝜎2𝜇, 𝜎2𝑅𝑂 , and𝜎2𝑅𝐼 and a likelihood (which need not be normal). The
Bayesian approach presented next is approximate Bayesian
computation (ABC), which does not require a known like-
lihood for the data and can accommodate constraints on
variances and/or ratios of variances by choice of the prior
distributions.

The “output” of any Bayesian analysis is the posterior
distribution and so the output of ABC is an estimate of the
posterior distributions of 𝜎2𝜇, 𝜎2𝑅𝑂 , and 𝜎2𝑅𝐼 . No matter what
type of Bayesian approach is used, a well-calibrated Bayesian
approach satisfies several requirements. The requirement of
interest here is that, in repeated applications of ABC, approx-
imately 95% of the middle 95% of the posterior distribution
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for each of 𝜎2𝜇, 𝜎2𝑅𝑂 , and 𝜎2𝑅𝐼 should contain the respective true
values.

In ABC, one assumes that a model has input parameters𝜃 and outputs data 𝑦𝑀 = 𝑦(𝜃) (𝑀 for “model”) and that there
is corresponding observed real data 𝑦obs. Here, the model is
(8), which specifies how to generate synthetic 𝑂 and 𝐼 data
and does require a likelihood; however, the true likelihood
used to generate the data need not be known to the user.
Synthetic data is generated from the model for many trial
values of 𝜃, and trial 𝜃 values are accepted as contributing to
the estimated posterior distribution for 𝜃|𝑦obs if the distance𝐷(𝑦obs, 𝑦(𝜃)) between 𝑦obs and 𝑦𝑀 = 𝑦(𝜃) is reasonably
small. Alternatively, for most applications, it is necessary to
reduce the dimension of 𝑦obs to a small set of summary
statistics 𝑆 and instead accept trial values of 𝜃 if 𝐷(𝑆(𝑦obs),𝑆(𝑦(𝜃))) < 𝑇, where 𝑇 is a user-chosen threshold. Here, 𝑦obs
is the paired (𝑂, 𝐼) data in each inspection group, and 𝑆(𝑦obs)
includes within- and between-groups sums of squares and
within-group covariance between𝑂 and 𝐼. Specifically, recall
that the estimator of 𝜎2𝑅𝐼 in (8) is 𝜎̂2𝑅𝐼 = (1/(𝑛 − 1)){∑𝑛𝑗=1(𝑖𝑗 −𝑖)2−∑𝑛𝑗=1(𝑜𝑗−𝑜)(𝑖𝑗−𝑖)} and that amethod-of-moments-based

estimate of 𝜎2𝑆𝐼 is 𝜎̂2𝑆𝐼 = (∑𝑔𝑗=1(𝑖𝑗 − 𝑖)2)/(𝑔 − 1) − (𝜎̂2𝑅𝐼 + 𝜎̂2𝜇)/𝑛.
And 𝜎2𝜇 can be estimated using 𝜎̂2𝜇 = ∑𝑛𝑗=1(𝑜𝑗 − 𝑜)(𝑖𝑗 − 𝑖).
The quantities 𝜎̂2𝑅𝐼, 𝜎̂2𝑆𝐼, 𝜎̂2𝑅𝑂, 𝜎̂2𝑆𝑂, and 𝜎̂2𝜇 are therefore good
choices for summary statistics to be used for ABC. Because
trial values of 𝜃 are accepted if 𝐷(𝑆(𝑦obs), 𝑆(𝑦(𝜃))) < 𝑇, an
approximation error to the posterior distribution arises
which several ABC options attempt to mitigate. Such options
involve weighting the accepted 𝜃 values by the actual distance𝐷(𝑆(𝑦obs), 𝑆(𝑦(𝜃))) (abctools in R [25]). As an aside, if the
errormodel ismultiplicative rather than additive, expressions
given in [1] can be used as summary statistics.

To summarize, ABC consists of three steps: (1) sample
parameter values from their prior distribution 𝑝prior(𝜃); (2)
for each simulated value of 𝜃 in (1), simulate data from
(8); (3) accept a fraction of the sampled prior values in (1)
by checking whether the summary statistics computed from
the data in (2) satisfy 𝐷(𝑆(𝑦obs), 𝑆(𝑦(𝜃))) < 𝑇. If desired,
aiming to improve the approximation to the posterior, adjust
the accepted 𝜃 values on the basis of the actual 𝐷(𝑦obs, 𝜃)
value. ABC requires the user to make three choices: the
summary statistics, the threshold 𝑇, and the measure of
distance 𝑑. Reference [35] introduced a method to choose
summary statistics that use the estimated posterior means
of the parameters based on pilot simulation runs. Reference
[36] used an estimate of the change in posterior 𝑝posterior(𝜃)
when candidate summary statistics are added to the current
set of summary statistics. Reference [37] illustrated a method
to evaluate whether a candidate set of summary statistics
leads to a well-calibrated posterior in the same sense that
is used in this paper; that is, nominal posterior probability
intervals should have approximately the same actual coverage
probability.

To illustrate application of ABC to top-downUQ, simula-
tions using (8) were performed. Recall that an additive model
is a reasonable approximation to a multiplicative model if the
error variances are small and the data is analyzed on a log

scale or if there are effects in addition to calibration which
impact the random and systematic errors, such as random
changes in background count rates which are not adjusted
for. Simulations from a multiplicative error model were also
investigated, with good results, such as those described next
for the additive model; the summary statistics for ABC to use
Grubbs-type estimators for a multiplicative model are given
in [1, 7].

The simulations were performed in R using three steps. In
the first step, ABC requires a training collection of parameter
values and corresponding summary statistics for each of
many simulations. So, in each of 105 simulations, the values
for 𝜎𝑅𝑂, 𝜎𝑆𝑂, 𝜎𝑅𝐼, 𝜎𝑆𝐼, 𝜎𝜇 were sampled from their respective
prior probability densities. In the second step, (8) was used
to generate 𝐼 and 𝑂 data. In the third step, the expressions
for 𝜎̂2𝑅𝑂, 𝜎̂2𝑆𝑂, 𝜎̂2𝑅𝐼, 𝜎̂2𝑆𝐼, and 𝜎̂2𝜇 given above were used as
summary statistics, resulting in a parameter matrix and
corresponding summary statistics matrix, each having 105
rows and 5 columns.Then, in a separate set of 105 simulations,
the same first and second steps were repeated, and for
each simulated set of parameters and summary statistics,
the parameter and summary statistics matrices from the
third step in training were used in the abc function in
the abctools package, using an acceptance fraction of 0.01
(meaning that 1% of the trial values for the true parameters
were accepted), to produce an approximate posterior for each
of the five parameters.This posterior can be used to assess the
actual coverage probability, for example, of an interval that
contains 95% of the posterior probability.

It was found [7] that the actual coverages for 𝜎𝑅𝑂, 𝜎𝑆𝑂,𝜎𝑅𝐼, 𝜎𝑆𝐼 were essentially the same (to within simulation
uncertainty) as the nominal coverages, at 90%, 95%, and
99% probabilities, for a normal distribution and all of
the nonnormal distributions investigated (uniform, gamma,
lognormal, beta, t, and generalized lambda with thick or
thin tails), each having the same 𝜎𝑅𝑂, 𝜎𝑆𝑂, 𝜎𝑅𝐼, 𝜎𝑆𝐼 values.
In addition, when a normal distribution was used to train
ABC and any of the evaluated nonnormal distributions were
used to test ABC, very nearly the same actual coverages (to
within approximately±0.01) were obtained. As another check
of robustness, one prior distribution was used for training
ABC and a prior that was wider by a factor of 1.3 was used
in testing. In that case, the actual coverages dropped from
approximately 0.95 to approximately 0.90, so this implemen-
tation is less robust to using a wider prior in testing than in
training. Also, the RMSE of the ABC estimator was compared
to each of several non-Bayesian constrained estimators that
are currently being evaluated. Not surprisingly, provided that
the prior used in training was approximately the same as that
used in testing, the ABC estimator had lowest RMSE. The
intent here is not to make any general RMSE performance
claims; instead, these results provide a second indication that
the ABC implementation is well calibrated, in the sense that
if the assumed prior equals the true prior then the RMSE
of the ABC estimator is highly competitive with that of the
non-Bayesian estimator and in the sense that the width of
the posterior accurately describes uncertainty. Finally, a well-
calibrated Bayesian analysis allows one to evaluate the effect
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Figure 4: Prior and posterior probability densities for data from realization of (8) for 𝜎𝑅𝐼 and 𝜎𝑆𝐼 for 𝑔 = 3 and 𝑛 = 3 and for 𝑔 = 10 and𝑛 = 10. The true values are 𝜎𝑅𝐼 = 2.3 (% relative) and 𝜎𝑆𝐼 = 1.2 (% relative).

of increasing sample size on uncertainty in the estimated
values of 𝜎𝑅𝑂, 𝜎𝑆𝑂, 𝜎𝑅𝐼, 𝜎𝑆𝐼.

To illustrate ABC output, Figure 4 plots the prior density
and the estimated posterior density for 𝜎𝑅𝐼 and 𝜎𝑆𝐼 for 𝑔
= 3 and 𝑛 = 3 and for 𝑔 = 10 and 𝑛 = 10. Because the
posterior densities are well calibrated, they can be used to
reliably assess whether top-down estimates of 𝜎𝑅𝐼 and 𝜎𝑆𝐼
are in agreement to within their respective uncertainties of
the corresponding bottom-up estimates of 𝜎𝑅𝐼 and 𝜎𝑆𝐼 from
Section 2. The priors used in Figure 4 are wide, with no
relative information regarding variance ratios assumed, and
the parameter 𝜎𝜇 is assigned a prior with amean value of 0.10,
with a relative standard deviation in 𝜎𝜇 of 10%. And Figure 4
shows that, in this case, having only 𝑔 = 3 and 𝑛 = 3 per
group does not lead to a narrow posterior, but, with 𝑔 = 10
and 𝑛 = 10, the posterior is fairly narrow.
4. Application of RSD Estimates: Statistical
Testing of Materials Accounting Data

4.1. Sequential Statistical Testing of MB Sequences. Recall that
NMAevaluates one ormoreMBs,where theMB is defined for
balance period 𝑗 as MB𝑗 = (𝐼𝑗−1 + 𝑇in,𝑗 − 𝑇out,𝑗) − 𝐼𝑗 [38, 39].
Typically, many measurements are combined to estimate the
terms𝑇in, 𝐼begin, 𝑇out, and 𝐼end in theMB; therefore, the central
limit effect and years of experience suggest that MBs in most
facilities will be approximately normally distributed with the
mean equal to the true NM loss 𝜆𝑗 and standard deviation𝜎𝑗, which is expressed as 𝑋𝑗 ∼ 𝑁(𝜆𝑗, 𝜎𝑗), where 𝑋 denotes
the MB and the notation 𝜎𝑗 is a shortened version of 𝜎MB,𝑗. A
sequence of 𝑛MBs will be assumed to have approximately a
multivariate normal distribution [38–43], (𝑋1, 𝑋2, . . . , 𝑋𝑛) ∼𝑀𝑉𝑁(𝜆, Σ), where the n-by-n covariance matrix is

Σ =(
(

𝜎21𝜎212 ⋅ ⋅ ⋅ 𝜎21𝑛𝜎221𝜎22 ⋅ ⋅ ⋅ 𝜎22𝑛...𝜎2𝑛1𝜎2𝑛2 ⋅ ⋅ ⋅ 𝜎2𝑛
)
)

. (12)

The magnitude of 𝜎𝑗 determines the amount of NM loss,𝜆 = ∑𝑛𝑘=1 𝜆𝑘, which leads to high detection probability (DP).
For example, suppose the facility tests for NM loss only, not
for NM gain, and assume that 𝑋𝑗 ∼ 𝑁(𝜆𝑗, 𝜎𝑗) is an adequate
model. Then, if a false alarm probability (FAP) of 𝛼 = 0.05 is
desired, the alarm threshold is 1.65𝜎𝑗. In the case of testing for
loss only, it follows that the loss detection probability 1 − 𝛽
for 𝜆 = 3.3𝜎 and 1 − 𝛽 > 0.95 if 𝜆 > 3.3𝜎𝑗, where 𝛽 is the
nondetection (false negative) probability.The factor 3.3 arises
from symmetry of the Gaussian distribution, requiring 𝛼 = 𝛽
= 0.05, and the fact that 1.65 = 3.3/2 is the 0.95 quantile of the𝑁(0, 1) distribution. One common goal is for DP = 1−𝛽 to be
at least 0.95 if 𝜆 ≥ 1 SQ (significant quantity, which is 8 kg for
Pu), which is accomplished if 𝜎𝑗 ≤ SQ/3.3. If 𝜎𝑗 > SQ/3.3, this
can be mitigated by reducing measurement errors to achieve𝜎𝑗 ≤ SQ/3.3 (if feasible) and/or by closing the balances
more frequently, so there is less nuclear material transferred
per balance period, which reduces 𝜎𝑗 [38, 39]. The DP of
other safeguards measures such as enhanced containment
and surveillance with smart cameras and/or remote radiation
detection is difficult to quantify and is outside the scope of
this paper. This section concludes with four remarks.

Remark 1. Large throughput facilities try to make 𝜎𝑗 as small
as reasonably possible and often try to keep 𝜎𝑗 small as a
percent of throughput but cannot achieve 𝜎𝑗 ≤ SQ/3.3. For
example, suppose that there is a measurement error relative
standard deviation of 0.5% of throughput. And suppose that
the FAP/DP goals are 𝛼 = 0.05 and 1 − 𝛽 = 0.95 and annual
throughput is 100 SQ. Then, 𝜎𝑗 = 0.5 SQ = SQ/2 > SQ/3.3,
so protracted diversion of 1 SQ over one year will not have a
high DP. Therefore, one reason for frequent MB accounting
is that abrupt diversion over hours or days is very likely to be
detected [40]. As a complementary approach that is beyond
the scope here, process monitoring [39] methods have the
potential to detect off-normal facility operation that could
misdirect NM to undeclared locations.

Remark 2. In the 1980s, some believed that a plant reporting a
MB every 30 days would have higher DP than that same plant



10 Science and Technology of Nuclear Installations

reporting a MB every year. However, [44] showed that, for
optimal (from the diverter’s viewpoint) protracted diversion
with the per-period loss being proportional to the row sums
of the covariance matrix Σ of the MB sequence, annual MB
testing has higher DP than monthly MB testing, and so,
for such protracted diversion, “less frequent balance closure
is better.” However, [44] conceded that NRTA has shorter
detection times and higher DP against abrupt diversion.
Publications [45–50] soon followed involving joint sequential
tests: one tuned to detect protracted diversion and one more
tuned for abrupt diversion. Such joint Page’s tests can be
tuned to have high DP against abrupt loss while still having
reasonably high DPs against protracted loss. Two types of
combined Page’s tests are included in the simulation study in
Section 4.3.

Remark 3. The assumption (𝑋1, 𝑋2, . . . , 𝑋𝑛) ∼ 𝑀𝑉𝑁(𝜆, Σ)
implies that Σ is known without estimation error. In practice,Σ is estimated using variance propagation applied to 𝑋𝑗 =
MB𝑗 = (𝐼𝑗−1 + 𝑇in,𝑗 − 𝑇out,𝑗) − 𝐼𝑗 and there will be estimation
error in the estimate Σ̂ [40].

The simulation study in Section 4.3 includes a sensitivity
study to assess the impact of estimation error Σ̂ on the
estimated false alarm probabilities (FAPs) and detection
probabilities (DPs).

Remark 4. This section focuses on operator MB sequences.
In international safeguards, the inspector randomly selects
items to verify NM declarations made by the operator. The
difference statistic, 𝐷 = 𝑁∑𝑛𝑗=1((𝑜𝑗 − 𝑖𝑗)/𝑛), defined as the
average difference in the sample of size n (extrapolated to the
population of size N) between operator declarations (almost
always based on operator measurements) and inspector
measurements can be used as a test statistic, or the𝐷 statistic
[2] can be used to compute the inspector MB statistic (or
sequence). Inspector MB = MB − 𝐷, which could be
analyzed using sequential statistical methods such as those
in Section 4.3. Alternatively, one can test individually each of
the 𝑛 paired differences 𝑑𝑗 = 𝑜𝑗−𝑖𝑗 and the overall𝐷 statistic,
and if none are found to be statistically significant, then the
IAEA could rely on operator MB evaluation as in Section 4.3.

4.2. Propagation of Variance to Estimate Σ. Estimating Σ is a
key step required in frequent NMA. To illustrate, a simplified
example model of a generic electrochemical facility with one
input stream, one output stream, and one key inventory item
will be used here [38]. Eachmeasurementmethod ismodeled
here using a multiplicative measurement error model for the
operator (𝑂):𝑀𝑖 = 𝜇𝑖(1+𝑆𝑖+𝑅𝑖), with 𝑆𝑖 ∼ 𝑁(0, 𝛿2𝑆) and 𝑅𝑖 ∼𝑁(0, 𝛿2𝑅), where𝑀𝑖 is the operator’s measured value of item𝑖, 𝜇𝑖 is the true but unknown value of item 𝑖, 𝑅𝑖 is a random
error of item 𝑖, and 𝑆𝑖 is a short-term systematic error for item𝑖. Then, the diagonal terms of Σ are calculated as

𝜎2𝑖 = 𝑇in𝑖2 (𝛿2in,𝑅 + 𝛿2in,𝑆) + 𝑇out𝑖2 (𝜎2out,𝑅 + 𝜎2out,𝑆)+ 𝐼2𝑖 𝛿2inV,𝑅 + 𝐼2𝑖−1𝛿2inV,𝑅 + (𝐼𝑖 − 𝐼𝑖−1)2 𝛿2inV,𝑆. (13)

The off-diagonal terms in Σ are calculated as𝜎2𝑖𝑗 = 𝑇in𝑖𝑇in𝑗𝛿2in,𝑆 + 𝑇out𝑖𝑇out𝑗𝛿2out,𝑆+ (𝐼𝑖𝐼𝑗 + 𝐼𝑖−1𝐼𝑗−1) 𝛿2inV,𝑆− 𝐼𝑖𝐼𝑗−1 (𝛿2inV,𝑆 + 𝛿2inV,𝑅 [if 𝑗 − 𝑖 = 1])− 𝐼𝑖−1𝐼𝑗 (𝛿2inV,𝑆 + 𝛿2inV,𝑅 [if 𝑖 − 𝑗 = 1]) .
(14)

In the last two terms, the random error of the inventory
term is only applied if the condition is true. Reference [31]
showed that the POV results for 𝜎2𝑖 and 𝜎2𝑖𝑗 are obtained by
appropriate interpretation ofGUM’s equation (1) in Section 2.
For this simplified version of an example from [38], this leads
to examples of 12-by-12 covariancematrices formonthlyMBs
over a one-year period; three examplematrices Σ1, Σ2, and Σ3
are listed next.

Three example covariance matrices, Σ1, Σ2, and Σ3, for a
generic electrochemical facility, are given [38]:1.00 −0.48 0.01 0.01 0.01−0.48 1.00 −0.48 0.01 0.010.01 −0.48 1.00 −0.48 0.010.01 0.01 −0.48 1.00 −0.480.01 0.01 0.01 −0.48 1.00

(15)

Equation (15) is Σ1, scaled to unit variance, only displaying 5
by 5 of the 12 by 12. This is the nominal case with 4 kg input
per period and 40 kg inventory; 𝛿𝑅 = 𝛿𝑆 = 0.01.1.00 0.17 0.33 0.33 0.330.17 1.00 0.17 0.33 0.330.33 0.17 1.00 0.17 0.330.33 0.33 0.17 1.00 0.170.33 0.33 0.33 0.17 1.00

(16)

Equation (16) is Σ2, scaled to unit variance. This is the case
with 4 kg input per period and 4 kg inventory.1.00 0.58 0.67 0.67 0.670.58 1.00 0.58 0.67 0.670.67 0.58 1.00 0.58 0.670.67 0.67 0.58 1.00 0.580.67 0.67 0.67 0.58 1.00

(17)

Equation (17) is Σ3, scaled to unit variance. This is the
case with 4 kg input per period and 40 kg inventory and 𝛿𝑆
increased from 0.01 to 0.02.

4.3. Sequential Testing ofMaterial Balance in NuclearMaterial
Accountancy. The assumption (𝑋1, 𝑋2, . . . , 𝑋𝑛) ∼ 𝑀𝑉𝑁(𝜆,Σ) implies that 𝑌 = Σ−1/2𝑋 ∼ 𝑀𝑉𝑁(Σ−1/2𝜆, 𝐼), where 𝐼
is the identity matrix. The transform 𝑌 = Σ−1/2𝑋 is known
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in safeguards as the standardized independently transformed
MUF (SITMUF, where MUF is another name for the MB),
which is most conveniently computed using the Cholesky
decomposition [43]. There are two main advantages of
applying statistical tests to 𝑌 rather than to 𝑋. First, alarm
thresholds depend only on the sequence length 𝑛 for Y and
not on the form of the covariance matrix Σ. Because it is
best to calculate thresholds using simulation, this is a logistic
advantage. Second, the variance of the 𝑌 sequence decreases
over time, so if a diversion occurs late in the analysis period,
the DP is larger for the 𝑌 sequence than for the 𝑋 sequence.
Note that one cannot claimhigherDP for the𝑌 sequence than
for the 𝑋 sequence in general, because the true loss scenario
is never known, and the DP can be larger for𝑋 than for 𝑌 for
some loss scenarios, which is demonstrated in Section 4.

The value of 𝑌𝑖 can be calculated using 𝑌 = Σ−1/2𝑋, but,
more intuitively as the residual from the 𝑋 sequence, 𝑌𝑗 ={𝑋𝑗 − 𝐸(𝑋𝑗 | 𝑋𝑗−1, 𝑋𝑗−2, . . . , 𝑋1)}/𝜎̃𝑗, where the standard
deviation 𝜎̃𝑗 is given by 𝜎̃𝑗 = √𝜎2𝑗𝑗 − 𝑓Σ−1𝑓𝑇, where 𝑓 =Σ𝑗,1:(𝑗−1), the 1 to (𝑗 − 1) entries in the 𝑗th row of Σ.

Several reasonable statistical tests have been evaluated in
[38, 41, 44–51] and are included in the simulation study in
Section 4.4, including the following 13 tests:

(1) MUF test: this compares each MUF value to a
threshold, which is the same as a Shewhart test in
quality control (QC). The test alarms on period 𝑗 if
MUF𝑗/𝜎𝑗 ≥ 𝑇 for some threshold 𝑇

(2) SITMUF test: this compares each SITMUF value𝑌 = Σ−1/2𝑋 to a threshold, which is the same as a
Shewhart test in QC. The test alarms on period 𝑗 if
SITMUF𝑗/𝜎SITMUF,𝑗 ≥ 𝑇 for some threshold T

(3) Page’s test applied to MUF: Page’s test to test for loss
is a sequence of sequential probability ratio tests,
defined as 𝑃𝑗 = max (0, 𝑃𝑗−1 + 𝑥𝑗/𝜎𝑗 − 𝑘), where𝑃0 = 0 [52]. The test alarms on period 𝑗 if 𝑃𝑗 >𝑇. The parameter 𝑘 is a control parameter that is
optimal for detecting a shift from zero loss to loss 𝜆
if 𝑘 = 𝜆/2. The alarm threshold T (usually denoted
as ℎ in literature on Page’s test, but this paper uses𝑇 for alarm threshold) is chosen so that the FAP per
analysis period (usually one year) is 0.05 or whatever
FAP is specified

(4) Page’s test applied to SITMUF: Page’s test to test for
loss is a sequence of sequential probability ratio tests,
as 𝑃𝑗 = max (0, 𝑃𝑗−1 + 𝑦𝑗 − 𝑘). The alarm threshold 𝑇
is chosen so that the FAP per analysis period (usually
one year) is 0.05 or whatever FAP is specified

(5) Combined Page’s tests applied to MUF: the use of
Page’s test with a large value of 𝑘 and small value of𝑇 has good DP for abrupt loss, and the use of Page’s
test with a small value of 𝑘 and large value of 𝑇 has
good DP for protracted loss. Therefore, a reasonable
option is to use a combination of two Page’s tests, one
with large 𝑘 and one with small k

(6) Applying combined Page’s tests to SITMUF

(7) CUMUF: at period j, CUMUF𝑗 = ∑𝑗𝑖=1 𝑥 𝑖 is the sum
of all MUF values from period 1 to 𝑗

(8) GEMUF: it has been shown that if the loss vector 𝜆
is known, then the Neyman-Pearson test statistic is
𝜆
𝑇Σ−1x, which is known as a matched filter in some

literature. The GEMUF statistic substitutes x𝑇 for 𝜆𝑇,
so GEMUF = x𝑇Σ−1x. In simulation studies, 𝜆 is
known, so the NP test statistic is useful for calculating
the largest possible DP. The GE in GEMUF is a
German abbreviation of Geschätzter, which means
“estimated,” so GEMUF means estimated MUF, and
GEMUF is the same as theMahalanobis distance from
the 0 vector and Hotelling’s multivariate 𝑇 statistic
[51]

(9) A nonsequential version of the Neyman-Pearson test,
𝜆
𝑇Σ−1x, is useful to calculate the largest possible

DP for given Σ and 𝜆. For completeness, four other
combined tests are also considered

(10) SITMUF and CUMUF

(11) Page’s on SITMUF and CUMUF

(12) SITMUF, Page’s on SITMUF, and GEMUF

(13) Page’s on SITMUF, CUMUF, and GEMUF

This section concludes with four remarks.

Remark 1 (SITMUF transform). The SITMUF transform is
recommended for two reasons. First, simulation is typically
used to select alarm thresholds, and it is convenient to always
work on the same scale when selecting alarm thresholds, so
the fact that 𝑌 = Σ−1/2𝑋 ∼ 𝑀𝑉𝑁(Σ−1/2𝜆, 𝐼) is convenient.
Note that alarm thresholds could be selected on the basis of
exact or approximate analytical results for some, but not all,
of the tests. For example, there are approximate expressions
for 𝑇 and k [53]. Second, the standard deviation 𝜎̃𝑗 is given
by 𝜎̃𝑗 = √𝜎2𝑗 − 𝑓Σ−1𝑓𝑇, where 𝑓 = Σ𝑗,1:(𝑗−1), the 1 to (𝑗 − 1)
entries in the jth row of Σ, so the standard deviation of the
MUF residuals decreases in the later periods. Therefore, the
independence transform is analogous to a bias adjustment,
leading to smaller prediction variance in later periods, which
tends to increase the DP for SITMUF compared to MUF
(there are exceptions where the DP for MUF is larger than
the DP for SITMUF; see Section 4.4, DP results).

Remark 2 (choosing thresholds). Thresholds can be chosen
in many ways and can be assumed to be constant for each
period or not.Therefore, simulation DP results in Section 4.4
are not claimed to be optimal but are example DP results.

Remark 3 (performance criteria). The main performance
criterion for comparing tests is the DP. But the average time
to detection and robustness to misspecifying the covariance
matrix Σ are also important.

Remark 4. There are other tests in the literature, including the
power one and scan tests [38, 41–43].
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Table 1: DPs for Σ1. Boldface entries have the largest DPs (excluding NP) for the respective column.

DP
Loss 1

(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3)/10

Loss 2
(3, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0)
(0, 0, 0, 0, 0, 3, 0, 0, 0, 0,

0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 3)

Loss 3
(0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,

0)

Loss 4
(0,1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

1)

MUF 0.07 0.58, 0.58, 0.58 0.15 0.19
SITMUF 0.20 0.65, 0.89, 0.81 0.82 0.58
Page on MUF 0.18 0.75, 0.85, 0.74 0.76 0.58
Page on SITMUF 0.71 0.82, 0.99, 0.56 1.0 0.99
Combined Page MUF 0.74 0.83, 0.99, 0.80 1.0 0.99
Combined Page, SITMUF 0.74 0.83, 0.98, 0.80 1.0 0.99
CUMUF 0.26 0.91, 0.64, 0.18 0.50 0.65
GEMUF 0.13 0.87, 0.70, 0.11 0.57 0.48
NP 0.82 0.99, 1.0, 0.99 1.0 1.0
SITMUF and CUMUF 0.23 0.80, 0.87, 0.80 0.81 0.62
SITMUF, Page, CUMUF 0.28 0.85, 0.85, 0.75 0.76 0.58
SITMUF, Page, GEMUF 0.20 0.84, 0.84, 0.72 0.74 0.61
Page, CUMUF, GEMUF 0.23 0.85, 0.75, 0.75 0.76 0.58

Table 2: DPs for Σ2.
DP

Loss 1
(0.3, 0.3, 0.3, 0.3, 0.3, 0.3,
0.3, 0.3, 0.3, 0.3, 0.3, 0.3)

Loss 2
(3, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0)
(0, 0, 0, 0, 0, 3, 0, 0, 0, 0,

0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 3)

Loss 3
(0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,

0)

Loss 4
(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

1)

MUF 0.07 0.60, 0.60, 0.60 0.18 0.18
SITMUF 0.06 0.62, 0.76, 0.80 0.14 0.14
Page on MUF 0.13 0.13, 0.15, 0.12 0.23 0.23
Page on SITMUF 0.09 0.24, 0.63, 0.58 0.18 0.19
Combined Page MUF 0.10 0.52, 0.76, 0.79 0.21 0.21
Combined Page SITMUF 0.10 0.52, 0.76, 0.79 0.20 0.20
CUMUF 0.07 0.81, 0.05, 0.05 0.09 0.19
GEMUF 0.06 0.79, 0.41, 0.11 0.14 0.14
NP 0.15 0.98, 0.98, 0.98 0.44 0.62
SITMUF and CUMUF 0.06 0.79, 0.71, 0.75 0.18 0.13
SITMUF, Page, CUMUF 0.11 0.69, 0.57, 0.63 0.16 0.17
SITMUF, Page, GEMUF 0.11 0.52, 0.65, 0.79 0.19 0.21
Page, CUMUF, GEMUF 0.11 0.69, 0.57, 0.63 0.16 0.20

4.4. Simulation Study. Example DP results are in Tables 1–3
for Σ1, Σ2, and Σ3, respectively, using 105 simulations (so are
repeatable to within ±0.01) to choose alarm thresholds and
to estimate DPs. Tables 1–3 indicate that, as expected, there
is no overall best test. However, Page’s test on SITMUF or
a combined Page’s test on SITMUF is often among the best

performers. Whether Page’s test on SITMUF has larger DP
than Page’s test on MUF depends on the covariance matrix.

To illustrate the behavior of some of the tests usingΣ1 and
loss 3 in Tables 1–3 ((0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0)), Figure 5 plots
the true loss and example MUF and SITMUF values (and
the average SITMUF value over all simulations) in (a) and
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Figure 5: For Σ = Σ1, (a) the true loss, MB, SITMUF, and average SITMUF over all simulations versus balance period and (b) the alarm
probability versus balance period (105 simulations) for SITMUF, Page1 SITMUF, CUMUF, and GEMUF.

Table 3: DPs for Σ3.
DP

Loss 1
(0.3, 0.3, 0.3, 0.3, 0.3, 0.3,
0.3, 0.3, 0.3, 0.3, 0.3, 0.3)

Loss 2
(3, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0)
(0, 0, 0, 0, 0, 3, 0, 0, 0, 0,

0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 3)

Loss 3
(0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,

0)

Loss 4
(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,

1)

MUF 0.07 0.66, 0.66, 0.66 0.15 0.17
SITMUF 0.05 0.81, 0.98, 0.81 0.43 0.20
Page on MUF 0.11 0.10, 0.10, 0.10 0.12 0.16
Page on SITMUF 0.07 0.20, 0.93, 0.20 0.83 0.18
Combined Page MUF 0.08 0.52, 0.98, 0.52 0.80 0.22
Combined Page SITMUF 0.07 0.52, 0.98, 0.52 0.79 0.22
CUMUF 0.06 0.80, 0.05, 0.80 0.05 0.07
GEMUF 0.06 0.91, 0.85, 0.96 0.18 0.20
NP 0.11 1.0, 1.0, 1.0 0.97 0.83
SITMUF and CUMUF 0.06 0.85, 0.97, 0.98 0.35 0.17
SITMUF, Page, CUMUF 0.10 0.24, 0.82, 0.88 0.14 0.16
SITMUF, Page, GEMUF 0.10 0.24, 0.82, 0.88 0.14 0.16
Page, CUMUF, GEMUF 0.10 0.09, 0.09, 0.09 0.11 0.15

plots example DPs in (b). Figure 6 plots the residual standard
deviation 𝜎̃𝑗 = √𝜎2𝑗𝑗 − 𝑓Σ−1𝑓𝑇 versus balance period for Σ1.

A sensitivity analysis was also performed by simulating
30% RSD in 𝛿𝑅 and 50% RSD in 𝛿𝑆 (see Section 3.2). With
these relatively large RSDs in 𝛿𝑅 and 𝛿𝑆, there is large
uncertainty in the DP. For example, the 95% interval for DPs
based on 105 simulations is {( 0.09, 0.41), (0.59, 0.99), (0.34,
1.0), (0.96, 1.0), (0.96, 1.0), (0.96, 1.0), (0.11, 0.92), (0.26,
0.97), (0.99, 1.0), (0, 56, 1.0), (0.35, 1.0), (0.93, 1.0), (0.31, 1.0)},
respectively, for the 13 tests for the loss in column 3 in Table 1
(0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0). The three least-sensitive DPs are
in boldface and are for Page on SITMUF, combined Page on
MUF, and combined Page on SITMUF.Themost sensitive DP
is also in boldface and underlined and is for CUMUF.

5. Summary

Statistical analyses used to support safeguards conclusions
require UQ, usually by estimating the RSD in random and
systematic errors associated with eachmeasurementmethod.
This paper reviewed why UQ is needed in nuclear safeguards
and examined recent efforts to improve both bottom-up and
top-down UQ for calibration data. A key issue in bottom-
up UQ using calibration with only a few calibration stan-
dards is that existing analytical approximations to estimate
variance components are not sufficiently accurate, so this
paper illustrated that simulation is needed. Once calibration
UQ is well quantified, whenever improved bottom-up UQ
predicts smaller measurement error RSDs than are observed
in top-down UQ [1], this is evidence of significant unknown
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Figure 6: Residual standard deviation 𝜎̃𝑖 = √𝜎2𝑖𝑖 − 𝑓Σ−1𝑓𝑇 versus
balance period for Σ1.
NDA error sources (“dark uncertainty,” [9]), which can then
potentially be identified.

The RSD of an assay method is often defined as the
reproducibility standard deviation as estimated in an inter-
laboratory comparison. Recent options for top-down UQ,
such as constrained estimators or Bayesian estimators that use
prior information, offer possible improvements over existing
variance component estimators. Any such improvements in
estimated RSDs should be accompanied by uncertainties in
the RSDs, which means that uncertainty in the estimated
uncertainties matters [2, 7]. The ABC approach in Section 3
appears to provide a robust estimate of the posterior distribu-
tion of the RSDs.

There are other types of bottom-up UQ used in safe-
guards not considered here. For example, the FRAM (fixed-
energy, response function analysis with multiple efficiencies)
gamma-based method [54] does not rely on calibration, and
FRAM’s uncertainties are impacted by physical mismatch
between test items and assay assumptions, which leads to
item-specific bias, and also by uncertainties in nuclear data
such as half-lives.This paper also used simulation to evaluate
the impact of uncertainty in measurement error RSDs on
estimated nuclear material loss detection probabilities in
sequences of measured material balances. Many different
sequential statistical tests were evaluated. In a related context,
[2] evaluated the impact of uncertainty inmeasurement error
RSDs on estimated DPs in verification data.

Acronyms

ANOVA: Analysis of variance
ABC: Approximate Bayesian computation

CMLE: Constrained maximum likelihood
estimator

CUMUF: Cumulative material unaccounted for
DA: Destructive analysis
EMP: Enrichment meter principle
FRAM: Fixed-energy, response function analysis

with multiple efficiencies for gamma
spectroscopy

GUM: Guide to the Expression of Uncertainty in
Measurement

MB, MUF: Material balance and material
unaccounted for are synonyms

NDA: Nondestructive analysis
NMA: Nuclear material accounting
RSD: Relative standard deviation
RMSE: Root-mean-square error
SQ: Significant quantity

SITMUF: Standardized independently transformed
MUF

UQ: Uncertainty quantification: top-down UQ
is empirical and bottom-up UQ is
first-principles

UNCL: Uranium neutron coincidence collar.

Additional Points

List of Symbols. MB𝑗 = (𝐼𝑗−1 + 𝑇in,𝑗 − 𝑇out,𝑗) − 𝐼𝑗, where(𝐼𝑗−1 + 𝑇in,𝑗 − 𝑇out,𝑗) is the book inventory. 𝐼𝑖𝑗 = 𝜇𝑖𝑗 +𝑆𝐼𝑖 + 𝑅𝐼𝑖𝑗, where 𝐼𝑖𝑗 is the inspector’s measured value of
item 𝑗 (from 1 to 𝑛) in group 𝑖 (from 1 to 𝑔), 𝜇𝑖𝑗 is the
true but unknown value of item 𝑗 from group 𝑖, 𝑅𝐼𝑖𝑗 ∼𝑁(0, 𝜎2𝑅𝐼) is a random error on item 𝑗 from group 𝑖, and𝑆𝐼𝑖 ∼ 𝑁(0, 𝜎2𝑆𝐼) is a short-term systematic error in group 𝑖.
RMSE = √𝐸{𝑋 − 𝑋true}2 = √𝐸{𝑋 − 𝐸𝑋}2 + {𝐸𝑋 − 𝑋true}2.𝑌 = 𝑓(𝑋1, 𝑋2, . . . , 𝑋𝑁) is GUM’s equation for themeasurand𝑌 and inputs𝑋1, 𝑋2, . . . , 𝑋𝑁.
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