352 research outputs found

    The Global Renormalization Group Trajectory in a Critical Supersymmetric Field Theory on the Lattice Z^3

    Full text link
    We consider an Euclidean supersymmetric field theory in Z3Z^3 given by a supersymmetric Φ4\Phi^4 perturbation of an underlying massless Gaussian measure on scalar bosonic and Grassmann fields with covariance the Green's function of a (stable) L\'evy random walk in Z3Z^3. The Green's function depends on the L\'evy-Khintchine parameter α=3+ϵ2\alpha={3+\epsilon\over 2} with 0<α<20<\alpha<2. For α=32\alpha ={3\over 2} the Φ4\Phi^{4} interaction is marginal. We prove for α32=ϵ2>0\alpha-{3\over 2}={\epsilon\over 2}>0 sufficiently small and initial parameters held in an appropriate domain the existence of a global renormalization group trajectory uniformly bounded on all renormalization group scales and therefore on lattices which become arbitrarily fine. At the same time we establish the existence of the critical (stable) manifold. The interactions are uniformly bounded away from zero on all scales and therefore we are constructing a non-Gaussian supersymmetric field theory on all scales. The interest of this theory comes from the easily established fact that the Green's function of a (weakly) self-avoiding L\'evy walk in Z3Z^3 is a second moment (two point correlation function) of the supersymmetric measure governing this model. The control of the renormalization group trajectory is a preparation for the study of the asymptotics of this Green's function. The rigorous control of the critical renormalization group trajectory is a preparation for the study of the critical exponents of the (weakly) self-avoiding L\'evy walk in Z3Z^3.Comment: 82 pages, Tex with macros supplied. Revision includes 1. redefinition of norms involving fermions to ensure uniqueness. 2. change in the definition of lattice blocks and lattice polymer activities. 3. Some proofs have been reworked. 4. New lemmas 5.4A, 5.14A, and new Theorem 6.6. 5.Typos corrected.This is the version to appear in Journal of Statistical Physic

    A simple method for finite range decomposition of quadratic forms and Gaussian fields

    Full text link
    We present a simple method to decompose the Green forms corresponding to a large class of interesting symmetric Dirichlet forms into integrals over symmetric positive semi-definite and finite range (properly supported) forms that are smoother than the original Green form. This result gives rise to multiscale decompositions of the associated Gaussian free fields into sums of independent smoother Gaussian fields with spatially localized correlations. Our method makes use of the finite propagation speed of the wave equation and Chebyshev polynomials. It improves several existing results and also gives simpler proofs.Comment: minor correction for t<

    Kosterlitz-Thouless Transition Line for the Two Dimensional Coulomb Gas

    Full text link
    With a rigorous renormalization group approach, we study the pressure of the two dimensional Coulomb Gas along a small piece of the Kosterlitz-Thouless transition line, i.e. the boundary of the dipole region in the activity-temperature phase-space.Comment: 61 pages, 2 figure

    Entrepreneurship in the Fashion Industry: A Case Study of Slow Fashion Businesses

    Get PDF

    Entrepreneurship in the Fashion Industry: A Case Study of Slow Fashion Businesses

    Get PDF

    Quark Confinement and Dual Representation in 2+1 Dimensional Pure Yang-Mills Theory

    Get PDF
    We study the quark confinement problem in 2+1 dimensional pure Yang-Mills theory using euclidean instanton methods. The instantons are regularized and dressed Wu-Yang monopoles. The dressing of a monopole is due to the mean field of the rest of the monopoles. We argue that such configurations are stable to small perturbations unlike the case of singular, undressed monopoles. Using exact non-perturbative results for the 3-dim. Coulomb gas, where Debye screening holds for arbitrarily low temperatures, we show in a self-consistent way that a mass gap is dynamically generated in the gauge theory. The mass gap also determines the size of the monopoles. In a sense the pure Yang-Mills theory generates a dynamical Higgs effect. We also identify the disorder operator of the model in terms of the Sine-Gordon field of the Coulomb gas.Comment: 26 pages, RevTex, Title changed, a new section added, the discussion on stability of dressed monopole expanded. Version to appear in Physical Review

    Garment worker rights and the fashion industry’s response to COVID-19

    Full text link
    © The Author(s) 2020. In this commentary, we examine the fashion industry’s early responses to COVID-19. Looking across fashion’s global production networks, we argue the fashion industry’s response has been rapid, yet highly inequitable, reflecting—and further entrenching—existing inequalities in the industry

    Will COVID-19 support the transition to a more sustainable fashion industry?

    Full text link
    In this policy brief, we examine the impact of COVID-19 on sustainability initiatives in the fashion industry. We ask whether COVID-19 is likely to support the transition to a more sustainable fashion industry. In answering this question, we utilize a framework for examining sustainability along the fashion-supply chain, highlighting the opportunities and challenges for a sustainable transition with respect to design, production, retail, consumption, and end-of-life. At each step, we also consider socioeconomic dimensions with regard to social impacts, employment, and gender. In doing so, we argue that any meaningful shift toward sustainability and a just transition must recognize social and environmental challenges as interconnected, addressing structural inequalities

    Vortices and confinement at weak coupling

    Full text link
    We discuss the physical picture of thick vortices as the mechanism responsible for confinement at arbitrarily weak coupling in SU(2) gauge theory. By introducing appropriate variables on the lattice we distinguish between thin, thick and `hybrid' vortices, the latter involving Z(2) monopole loop boundaries. We present numerical lattice simulation results that demonstrate that the full SU(2) string tension at weak coupling arises from the presence of vortices linked to the Wilson loop. Conversely, excluding linked vortices eliminates the confining potential. The numerical results are stable under alternate choice of lattice action as well as a smoothing procedure which removes short distance fluctuations while preserving long distance physics.Comment: 21 pages, LaTe

    On the spatial Markov property of soups of unoriented and oriented loops

    Full text link
    We describe simple properties of some soups of unoriented Markov loops and of some soups of oriented Markov loops that can be interpreted as a spatial Markov property of these loop-soups. This property of the latter soup is related to well-known features of the uniform spanning trees (such as Wilson's algorithm) while the Markov property of the former soup is related to the Gaussian Free Field and to identities used in the foundational papers of Symanzik, Nelson, and of Brydges, Fr\"ohlich and Spencer or Dynkin, or more recently by Le Jan
    corecore