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Abstract

We study the quark confinement problem in 2+1 dimensional pure Yang-Mills

theory using euclidean instanton methods. The instantons are regularized and

dressed Wu-Yang monopoles. The dressing of a monopole is due to the mean

field of the rest of the monopoles. We argue that such configurations are stable

to small perturbations unlike the case of singular, undressed monopoles. Using

exact non-perturbative results for the 3-dim. Coulomb gas, where Debye

screening holds for arbitrarily low temperatures, we show in a self-consistent

way that a mass gap is dynamically generated in the gauge theory. The mass

gap also determines the size of the monopoles. In a sense the pure Yang-

Mills theory generates a dynamical Higgs effect. We also identify the disorder

operator of the model in terms of the Sine-Gordon field of the Coulomb gas.
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I. INTRODUCTION

The problem of quark confinement is one of the “old” unsolved problems in theoreti-

cal physics. Despite intense activity over the past two decades, and several approaches to

the problem, it is surprising how little we know about this phenomenon. Lattice gauge

theories, together with the theory of renormalization group (which provides the basic con-

ceptual framework for all other approaches as well) is the only known quantitative and

reliable method of attacking this problem and Monte Carlo simulations have indeed almost

“demonstrated” confinement in pure gauge theories in four dimensions. However there is the

nagging feeling that we can “demonstrate” confinement, even calculate relevant quantities

to some degree of accuracy - but we still dont “understand” confinement. Despite impressive

progress lattice methods remain a black box. More specifically we do not understand in full

generality whether (if any) some specific type of gauge field configurations are responsible

for confinement and whether we can arrive at a consistent picture of the vacuum of strongly

coupled gauge theories.

Physical mechanisms for confinement are, of course, as old as the idea itself. One of

the most significant ideas, proposed by Mandelstam [1], ’t Hooft [2] and Nambu [3] is that

of dual superconductivity - that the gauge theory vacuum is a condensate of magnetic

monopoles. By the dual version of Meissner effect, quarks would then be naturally confined.

The formulation of this idea gave rise to deep results concerning duality between electric

and magnetic fluxes and its implications to the phase diagram of general gauge theories [4].

The idea is very convincing, and lattice results indeed seem to support it : but is rather

difficult to establish in usual gauge theories. Recently, however, there has been significant

progress in supersymmetric gauge theories where holomorphy and global properties of the

moduli space of vacua have been used to argue for non-perturbative phenomena like quark

confinement and chiral symmetry breaking [5]. This approach is essentially Hamiltonian :

one tries to obtain a picture of the vacuum wave functional.

A complementary viewpoint stems from the Euclidean approach to the problem. This
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is the idea that Euclidean instantons essentially disorder the vacuum and lead to color

confinement. The only known successful implementation of this idea is the classic work

of Polyakov [6] who showed that confinement indeed occurs by this mechanism in three

dimensional SU(2) Yang-Mills theory coupled to adjoint representation Higgs field. The

Higgs breaks the gauge group to U(1). The instantons of this model are the ’t Hooft-

Polyakov monopoles. (In the three dimensional Euclidean theory these are of course not

solitons, but tunnelling configurations). When the mass scale of this symmetry breaking -

the mass of the W boson, mW is large compared to the mass scale set by the dimensional

gauge coupling, a dilute gas of monopoles provides a self-consistent picture. The resulting

monopole plasma leads to Debye screening. Wilson loops in the fundamental representation

obey an area law and a careful treatment shows that the adjoint representation Wilson loops

obey a perimeter law [7]. This is exactly what one expects. The argument can be extended

to the SU(N) theory as well.

In this paper we extend this approach to pure Yang-Mills theory. This is a much more

nontrivial system for several reasons. Firstly, perturbation theory, though ultraviolet finite,

is hopelessly infrared divergent. Secondly, because this theory has only one length scale set

by the gauge coupling g, one does not have the luxury of having another length scale mW

to enable a controlled semiclassical approximation. The classical monopole configurations

are singular configurations in the continuum limit and hence the renormalization of the

monopole gas is very nontrivial.

It is possible to regulate the singularity by modifying the fields inside a “core” of some

size λ. The classical action now depends on λ. We do not vary the size λ of the monopoles.

Rather we treat it as a parameter of the theory to be self consistently determined by the

mass gap.

If the fluctuations around a regularised monopole solution are decomposed in terms of

representations of the direct product of spin and color groups, the even parity S-wave fluc-

tuations are unstable [8]. This is because the background magnetic field has a long range

Coulomb tail. However the fluctuation problem in the Yang-Mills theory should be per-
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formed not around a single monopole solution, but around the neutral plasma of monopoles

which populate the vacuum. These monopoles have long range Coulomb interactions : other

monopoles affect the field around a typical monopole in a nontrivial way. More significantly

the monopole positions and charges are fluctuating, which make the charge density field of

the monopoles a dynamical variable. Such a fluctuation problem is difficult to solve exactly.

In this work we address this question in an approximation guided by the physics of the

problem. We incorporate the fluctuations of the charge density ρ(x) by invoking known

rigorous results of the three dimensional Coulomb gas due to Brydges [9]. In [9] it has been

shown that for a given arbitrarily low temperature there is a chemical potential (fugacity)

such that the correlation of the density operator cluster. In other words there is Debye

screening at all temperatures. The field around a given charge thus decays exponentially

over a debye length lD as opposed to a power law decay.

Our strategy is as follows. The aim is to show that Debye screening is self consistently

realized in the plasma of magnetic monopoles. The main complication is that the fugacity

of the Coulomb gas is itself a functional of the density of monopoles ρ(x). However using

the results of [9] we can argue that for a given value g2 of the gauge coupling there exists

a fugacity of the monopoles for which the plasma has a finite Debye length. The mean

‘magnetic field’ is also screened with a fall off given by the Debye length. In this sense a

monople configuration in a plasma does not have a Coulomb tail and such a configuration

which incorporates this collective property we call a ‘dressed’ monopole. Small fluctuations

of the gauge field around a dressed monopole are expected to be stable for reasons similar

to the Yang-Mills-Higgs theory. There the potential appearing in the stability operator

decays exponentially with a scale 1
mW

due to contribution from the Higgs field. Hence in the

pure Yang-Mills theory one seems to have a dynamical Higgs effect that is produced by the

monopole plasma. We also indicate how the mass gap determines the size of the monopoles.

Finally we discuss the relation of our approach with the work of ’t Hooft [4]. We give an

explicit representation of the disorder operators in 2 + 1 dimensional Yang-Mills theory and

indicate that the dual theory is a Z2 non-linear sigma model.
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Our discussion of the confinement problem gives a picture of the dominant configurations

in the Euclidean framework. Feynman [10] has given qualitative arguments for the ground

state wave function of this gauge theory in analogy with his work on the roton spectrum in

liquid helium. It would be interesting to relate these two approaches.

The plan of this paper is as follows. In Section II we discuss the topology of the vacuum in

both the Georgi-Glashow model and the pure gauge theory. In Section III we briefly review

the generation of mass gap and confinement of N -ality in the Yang-Mills Higgs system. In

Section IV we discuss self-consistent Debye screening of the monopole plasma in the pure

Yang-Mills theory. Section V is devoted to the dual representation in terms of disorder

operators. Section VI is devoted to conclusions. In Appendix I we state the main result of

[9].

II. TOPOLOGY OF THE GAUGE CONDITION

In this section we shall review the topological properties of the vacuum of SU(2) Yang-

Mills theory in 2 + 1 dimensions following [13]. The physical degrees of freedom are most

transparent in a unitary type of gauge. For pure gauge theories this is defined as follows.

Consider some local operator X(x) which transforms according to the adjoint representation

of SU(2). The unitary gauge is now defined by

[X(x), τ3] = 0 (1)

(τ i , i = 1, 2, 3 stands for the Pauli matrices). This gauge condition retains the U(1) gener-

ated by τ 3 as an unbroken symmetry. If the model contains adjoint Higgs fields in addition

to the gluons, X may be the Higgs field itself and (1) is the conventional unitary gauge in

such a Georgi-Glashow model. In pure Yang Mills theory X has to be constructed out of

the gauge fields alone.

We may write the matrix operator X in the form

X = λ I +
3
∑

a=1

ǫa(x)τ
a (2)
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where I is the identity matrix. Then the points x0 where

ǫa(x0) = 0 (3)

are singularities of the gauge condition (1). As shown in [13] these singularities are nothing

but magnetic monopoles with respect to the unbroken U(1). In 3 + 1 dimensions these

monopoles are “particles” which respresent dynamical degrees of freedom (in this gauge)

other than the conventional fields. In 2 + 1 dimensions these monopoles are instanton

configurations which will play a crucial role in determining the properties of the vacuum.

In the Georgi-Glashow model the monopoles are given by the well known ’t Hooft-

Polyakov solution, while for pure gauge theory they are described by the Wu-Yang solution.

III. CONFINEMENT IN 2+1 DIMENSIONAL GEORGI GLASHOW MODEL

We now briefly discuss the salient features of the mechanism of quark confinement in the

Georgi-Glashow model (for details see Ref. [6] and [7]).

The model is described by the lagrangian density

L = − 1

2g2
tr FµνF

µν − tr(∇µΦ)2 − λ

4

(

2tr Φ2 − v2
)2

(4)

where Aµ denotes the gauge field and Φ a Higgs field in the adjoint representation of SU(2).

The instantons of this model are ’t Hooft-Polyakov monopoles. For reasons to be discussed

later we are interested in monopoles with minimal charge :q = ±1 These are the ’t Hooft-

Polyakov monopoles. In the unitary gauge [Φ, τ3] = 0 the fields are given by:

Ãµ =
1

2





qÃ3
µ Ã1

µ − iqÃ2
µ

Ã1
µ + iqÃ2

µ −qÃ3
µ





Φ̃ = q
H(vr)

r

τ 3

2
(5)

where q = ±1 and

Ã1
µ = = −K(rmW )

r

[

φ̂ cosφ+ θ̂ sin φ
]
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Ã2
µ =

K(rmW )

r

[

−φ̂ sinφ+ θ̂ cosφ
]

(6)

Ã3
µ = −1

r
tan

θ

2
[φ̂]µ = Dµ (7)

where (r, θ, φ) denote polar coordinates in space-times. The functions K(ξ), H(ξ) obey well

known differential equations for (5) - (6) to be a classical Euclidean solution. For r ≫ m−1
W

one has K(rmW ) ≃ 0 and H(vr) ≃ vr. m−1
W denotes the “size” of the monopole.

Note that given a configuration of monopoles and anti-monopoles, the Weyl group

changes each monopole into an anti-monopole and vice-versa. In principle one may fix

the gauge further to remove this discrete degeneracy. We, however, prefer not to do so and

average over the Weyl group. Then one may freely perform a sum over all the q = ±1.

As shown in [6], in the dilute gas approximation the path integral may written as a grand

canonical partition function of a gas of monopoles:

Z =
∞
∑

N=0

1

N !
JNQN (8)

where

QN =
∑

{qa}

∫

∏

dxa exp

(

−2π

g2

∑ qaqb
|xa − xb|

)

(9)

and the fugacity J is:

J =
16√
π
g6s3/2e−s

(

detD2

det−∂2

)−1/2 (
det ∆FP

det−∂2

)

(10)

D2 denotes the small fluctuation operator around single monopole field, ∆FP is the Fadeev-

Popov operator, and s is the action of a single monopole.

In (8) - (10) we have treated the various zero modes of D2 by the standard procedure of

collective coordinates [14]. The Weyl degeneracy of the unitary gauge condition has been

accounted for by summing over qa = 0,±1 for each space time point, as noted earlier.

The Coulomb gas of eqns. (8-10) may be expressed as a massive scalar field theory using

the sine-Gordon transform:

Z =
∫

Dχ(x) exp

[

− g2

32π2

∫

d3x
{

(∇χ)2 − 2M2(1 − cosχ)
}

]

(11)
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where

M2 =
16π2J

g2
. (12)

Let us now examine self-consistency of the above scheme. When J is small, so that the

scalar field theory is weakly coupled, M is precisely the mass gap. Equation (11) expresses

the long distance behavior of the theory in a dual representation. The classical action of a

single monopole has the form

s ∼ mW

g2
(13)

When mW/g
2 ≫ 1, it follows from (10) that J/g6 ≪ 1. Further the “classical” piece in

J dominates over the contribution from one-loop fluctuations. Thus the scalar field theory

(11) is indeed weakly coupled; M is the mass gap and from (12) M/g2 is small.

Since M is the mass gap, the correlation length ξ = 1/M . Also, J denotes the probability

of occurence of a single monopole and hence the number of monopoles in a Debye volume

of size ξ, Nξ is given by

Nξ =
J

M3
∼ g2

M
≫ 1 (14)

where we have used (12).

We immediately see that there is a large number of monopoles in one Debye volume

and hence the potential χ may be treated classically. The situation here is identical to

the Debye-Huckel theory of electrolytes in the limit of high temperatures where the Debye

length is large and the smoothly varying potential field χ satisfies the classical sine-Gordon

equation.

The Wilson loop average is given by

〈W (c)〉 =
1

2
〈Tr P exp

(

i
∮

Aµdxµ

)

〉 (15)

where Aµ = Aa
µ

τa

2
when the external quarks are in the fundamental representation of SU(2)

and Aµ = Aa
µT

a when the quarks are in the adjoint representation. Here T a are the genera-

tors of the adjoint representation.
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The “classical” contribution from the Wilson loop factors out:

〈W (c)〉 = 〈W (c)〉cℓ[ω(c)]qu (16)

where 〈W (c)〉cℓ = 1
2
〈Tr P exp

(

i
∮

Ãa
µ

T a

2
dxµ

)

〉, the average being evaluated in the ensemble

given by (11). [ω(c)]qu obeys a perimeter law:

[ω(c)]qu ∼ exp(−αP ) (17)

where α is a constant and P = perimeter of loop.

Let us first discuss the Wilson loop in the fundamental representation. In the ensemble

given by (11) one has

〈W (c)〉fund
cℓ =

∫

Dχ(y) exp[− g2

32π2M

∫

d3y(∇(χ− η

2
)2 − 2(1 − cosχ))] (18)

Where η(y) is the magnetic scalar potential due to a dipole layer of unit strength on sheet

S, which is the solid angle subtended by the loop at the point y In (18) we have scaled the

distances: y ≡Mx.

Since M is small, (18) may be evaluated by stationary phase approximation. The result

is

〈W (c)〉fund
cℓ = exp(−σA) (19)

where

σ =
g2M

32π2

∫ +∞

−∞
dy3







(

dχ̄

dy3

)2

+ 2 (1 − cos χ̄)







=
3g2M

8π2
. . . (20)

and A = area of the loop in physical units.. Then, using (16) it is easily seen that the

Wilson loop obeys an area law, indicating that quarks in the fundamental representation

are confined.

As shown in [7] the Wilson loop in the adjoint representation obeys a perimeter law

instead. This happens because there is no distinction between the quantum of magnetic flux

created by the Wilson loop and that created by the monopoles in the vacuum. The picture
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of confinement discussed in this section is valid for any SU(N) gauge group. The mechanism

is essentially Debye screening in a gas of “non-Abelian” monopoles belonging to the adjoint

representation of a dual group *SU(N) [7].

IV. CONFINEMENT IN PURE YANG-MILLS THEORY

In pure Yang Mills theory there is no Higgs field. This has two consequences. First, in

the absence of the second scale (i.e. mW ), the perturbation expansion is infrared divergent

and the theory cannot be defined perturbatively in the infinite volume limit. Secondly the

classical monopole solutions are Wu-Yang monopoles [15] which have zero size and infinite

action. We will regulate these monopoles by assigning a size λ, which is explained in the next

subsection. We will then construct an expansion around a plasma of such monopoles and,

as explained in the introduction, argue that these monopoles are stable against fluctuations.

A. The monopole solution

We will consider monopoles which have some size λ. The field due to single monopole

at ~x = 0 is given in the unitary gauge by:

Ãµ(x) =
1

2





qÃ3
µ Ã1

µ − iqÃ2
µ

Ã1
µ + iqÃ2

µ −qÃ3
µ





Ã1
µ(x) = −K(r/λ)

r

[

φ̂ cosφ+ θ̂ sinφ
]

µ

Ã2
µ(x) =

K(r/λ)

r

[

−φ̂ sinφ+ θ̂ cosφ
]

µ
(21)

Ã3
µ(x) = −1

r
tan

θ

2
[φ̂]µ = Dµ

in spherical coordinates. Here K(r/λ) is a structure function regulating the fields at r = 0.

The function K(r/λ) goes to 1 as r → 0 as follows

K(r/λ) ∼ 1 − r2

λ2
for r → 0 (22)

while at r = λ, K(r/λ) = K ′(r/λ) = 0 and remains zero for r > λ. Furthermore K ′(r/λ) is

continuous at r = λ. As shown by Banks, Myerson and Kogut [16], one can choose such a

10



K(r/λ) so that the configuration (21) is a classical solution. The action of single monopole

is

s =
4π

g2

∫ ∞

0
dr





(

dK

dr

)2

+

(

K2 − 1

2r2

)



 (23)

Note that the monopole field is abelian outside the monopole core. Consider a gas of

such monopoles such that if the positions of the monopoles are xa, xb etc., one always has

|xa − xb| > 2λ. The field configuration in the regions outside the core of the monopoles is

approximated by

Acℓ
µ (x) =

N
∑

a=1

Ãµ(x− xa) (24)

where xa denotes a monopole position and N is the number of monopoles. In our self-

consistent approach, we assume that (24) represents the dominant field configuration in the

euclidean path integral. The total action of this gas is

Scl = Ns +
2π

g2

∑

a6=b

qaqb
|xa − xb|

(25)

Finally we record the single monopole field configuration in the radial gauge

Aa
µ = −ǫµajx

j

r2
(1 −K(r/λ)) (26)

B. The path integral

The monopole configuration is used to evaluate the path integral by the saddle point

method. One expands the field around Acℓ
µ which is a classical solution outside the core.

The form of the solution inside the core is unimportant for our purposes:

Aµ = Acℓ
µ + gaµ (27)

The path integral may be formally written as:

Z =
∫

∏

x

dAµ(x) exp(−Scℓ) exp
(

−
∫

aD2ad3x
)

(28)
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where Scℓ is given by (25). Here D2 is the stability operator for small fluctuations:

∫

aD2ad3x ≡
∫

L′′(Acℓ) a
2d3x (29)

where L′′(Acℓ) is the second functional derivative of the Lagrangian density evaluated at

Acℓ.

Equation (28) as it stands is meaningless sinceD2 has a zero eigenvalue for each symmetry

of the original Lagrangian. The local gauge symmetry is fixed by requiring the fluctuations

to satisfy the background gauge condition

∇µ(Acℓ)aµ(x) = 0 (30)

where ∇µ(Acℓ) is the covariant derivative evaluated at the configuration Acℓ:

∇µ(Acℓ) ≡ ∂µ + i
[

Acℓ
µ ,

]

(31)

This gives rise to the usual Fadeev-Popov determinant (det ∆FP ). The zero modes arising

from the breaking of the global translation invariance and the U(1) transformations obeying

the background gauge condition but nonvanishing at infinity are replaced by integration over

corresponding collective coordinates. Finally we have to sum over all N with the standard

division by N !. One finally has the formal expressions

Z =
∞
∑

N=0

1

N !
QN

QN =
∑

{qa}

(

8√
π
s3/2

)N
∫ N
∏

a=1

dxae
−Scℓ J (32)

J =

(

detD2

det−∂2

)−1/2 (
det ∆FP

det−∂2

)

(33)

C. Instability of the Single Undressed Monopole

In the usual semiclassical method the dilute instanton gas [17] is noninteracting and one

writes

12



detD2 = (det d2)N (34)

where d2 is the stability operator for the single monopole configuration.

We will see, however, that the d2 has negative eigenvalues signifying the instability of a

single monopole. In the background gauge (30) the operator d2 has the form:

d2 = δµν∇α

(

Ãcℓ

)

∇α
(

Ãcℓ

)

+ i
[

F̃ cℓ
µν ,

]

(35)

where Ãcℓ is defined in (21) and F̃ cℓ
µν is the corresponding field. The Wu-Yang case corre-

sponds to K = 0 in (21). Following Yoneya [8] we shall use a spherical basis in the product

space [(space-time) ⊗ (isospin space)]. In this product space Ãcℓ
µ and the fluctuations aµ

become tensors. Then the unstable modes of d2 are given by

(a) Odd parity S waves:

φ1 = arr

φ4 =
1√
2

(aφφ + aθθ)

(b) Even parity S wave:

φ̄4 =
1√
2

(φφθ − φθφ)

The tensor indices on φ refer to the abovementioned spherical basis. The corresponding

eigenvalue equations are: (See Yoneya, Ref. [8])

(

− d2

dr2
+

3K2 − 1

r2

)

(

rφ̄4

)

= α2
e(rφ̄4) (36)

2K2

r2
φ1 −

√
2

(

K

r

d

dr
+
K − rK ′

r2

)

φ4 = α2
0φ1 (37)

√
2

(

1

r2

d

dr
(rK) − K − rK ′

r

)

φ1 +

(

− d2

dr2
− 2

r

d

dr
+
K2 − 1

r2

)

φ4 = α2
0φ4 (38)

13



(

d

dr
+

2

r

)

φ1 =
√

2
K

r
φ4 (39)

For the Wu-Yang monopole K = 0 and the instability is obvious from (36) and (38). In this

case both rφ4 and rφ̄4 obey the equation

(

− d2

dr2
− 1

r2

)

ψ = α2ψ, ψ = rφ4, rφ̄4. (40)

The above equation is the Schrodinger equation for a particle in a spherical potential U0(r) =

− γ
r2 with γ = 1. For such a potential it is known that when γ > 1/4 there are bound states

[18].

When the structure function K(r/λ) 6= 0 the odd parity S-waves become stable. For-

mally one can invert (39) to express φ4 in terms of φ1 and insert this into (37) to obtain:

[

−
(

d2

dr2
+

2

r

d

dr

)

+
K2 + 1

r2

](

rφ1

K

)

= α2

(

rφ1

K

)

(41)

In the corresponding Schrodinger problem the “potential” is now positive everywhere and

hence α2 > 0. Since one can now rewrite (39) as

φ1 =

√
2

r2

∫ r

0
yK(y)φ4(y)dy (42)

stability of φ4 also follows.

However, regularising the field near r = 0 does not remove the even parity S-wave

instability. In fact (36) has a potential that becomes asymptotically − 1
r2 as r → ∞. For

such a potential there are still an infinite number of negative eigenvalues. This result is

independent of the detailed form of the potential near r = 0. Hence the single regularised

monopole is unstable and cannot be treated as a dominant configuration in the path integral.

It should be noted in the presence of Higgs fields the potential is replaced by

3K2 +H2 − 1

r2
(43)

where H(vr) is the function in (5). As r → ∞, H(vr) = vr + e−mHr (where mH =
√

2λv
g

is the Higgs mass) , and hence the 1
r2 Coulomb tail is cancelled and we have a screened

potential e−mHr

r2 , which removes the potential instability.
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D. Debye Screening in the Monopole Gas

Our main point is that when the instantons are interacting, the fluctuation problem can-

not in general be factored into N copies of the fluctuation problem for an isolated monopole.

Rather one should consider the stability of the neutral plasma of monopoles as a whole. This

statement also applies to the Yang-Mills-Higgs system in the previous section. The main

reason behind this is that we have an integration over the positions of the monopole and

the charges, or equivalently a functional integration over the charge density field. The effect

of this averaging over the charge density is very nontrivial. The results of [9] show that

the charge density field clusters so that the theory of the density field generates a mass gap

dynamically. We summarize these results in Appendix I.

In fact the results of [9] mean that in the neutral plasma the fluctuations of the magnetic

field are bounded and the 1
r2 magnetic field of a single monopole is Debye screened to e−Mr

r2 ,

where M(g2, λ, z) is the non-perturbative mass gap, which depends on the coupling g2, the

monopole size λ which is effectively the cut-off of the Coulomb gas and the fugacity z.

Recall that the source of instability for a single isolated monopole is the long range tail of

the Coulomb potential. One might, therefore expect that in the screened neutral plasma a

“dressed” monopole whose Coulomb tail has been screened can in fact be stable.

In the following we shall assume that the monopole gas is dilute. Using translation

invariance we focus on one monopole at x = xα and its neighbourhood. We are thus

considering the problem in the presence of a single source at x = xα. Recall that the fields

outside the monopole cores of size λ are abelian. Thus, in the unitary gauge it follows from

(24) and (21) that outside the core of this monopole the field is

Ãout
µ =

N
∑

a=1

1

2
qa





Dµ(x− xa) 0

0 −Dµ(x− xa)



 (44)

where we have set xN = xα. Inside the core the effect of the core field of the other monopoles

can be ignored and we have

Ãin
µ =

N−1
∑

a=1

1

2
qa





Dµ(x− xa) 0

0 −Dµ(x− xa)




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+
1

2





qDµ(x− xα) W̃−
µ (x− xα)

W̃+
µ (x− xα) −qDµ(x− xα)



 (45)

where W̃±
µ ≡ Ã1

µ ± iqÃ2
µ and Ã1

µ, Ã
2
µ are as in (21). Introducing the charge density

ρ(x) ≡
N
∑

a=1

qaδ(x− xa) (46)

and assuming that in the mean, for large N , ρN ≃ ρN−1 we can rewrite (45) as

Aµ(x; xα, [ρ]) =
∫

d3y
τ 3

2
ρ(y)Dµ(x− y)

+ θ(λ− |x− xα|)




Dµ(x− xα) W−
µ (x− xα)

W+
µ (x− xα) −Dµ(x− xα)



 (47)

In the above expression the sharp θ function may be replaced by a smoother version.

Debye screening means that in the presence of a source the density ρ(y) has a mean value

ρ̄(y, xα), fluctuations around which are small. Aµ(x; xα, [ρ̄]) then represents a “dressed”

monopole configuration. In our case this “source” is provided by the particular monopole at

x = xα in the plasma and the statement pertains to the field in the neighbourhood of this

particular monopole.

The crucial point is that since Debye screening holds, we can assume self-consistently

that the gas of “dressed” monopoles is weakly interacting, unlike the “bare” monopoles. The

field around a dressed monopole decay exponentially over a distance scale set by the Debye

screening length lD = 1
M

. If the average distance between the monopoles is much larger than

lD then the interaction between such dressed monopoles vanishes and the operator D2 has a

N-fold degeneracy. In other words the potential appearing in the stability equation resembles

N far separated potential wells. In this situation we have, using translation invariance,

detD2 ≃ (detD2[ρ̄])N (48)

where D2[ρ̄] now denotes the stability operator for a single dressed monopole which is the

same for any monopole in the plasma. For finite distances between monopoles the exact

degeneracy is lifted and eigenvalues of D2 organize themselves in bands. This would lead to
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corrections to the result (48) which may be expanded in powers of lD
lm

where lm denotes the

average distance between the monopoles.

In this regard there is a difference between the pure Yang Mills system and the Yang-

Mills-Higgs system in the Higgs phase. As our stability analysis in the previous subsection

indicates (see e.g. equation (43)) the presence of the Higgs field means that the potential

appearing in the stability operator around a single monopole decays over length scales of the

order of 1
mW

. Since the debye length is much larger than 1
mW

corrections to the extensivity

of the small fluctuation determinant appear as powers of 1
lmmW

.

E. The Sine-Gordon Transform and Dynamical generation of Mass Gap

We can now rewrite the theory in terms of a sine-Gordon model. The path integral is

written as

Z =
∞
∑

N=0

1

N !

(

8g6

√
π
s̄3/2e−s̄

)N
∑

{qa}

N
∏

i=1

∫

d~xi exp



−2π

g2

∑

a6=b

qaqb
|xa − xb|



 (Θ[ρ̄])N (49)

where we have defined Θ[ρ̄] (functional of the charge densities) as

Θ[ρ̄] ≡
(

detD2[ρ̄]

det−∂2

)−1/2 (
det ∆FP (ρ̄)

det−∂2

)

(50)

and s̄ is the action for a single monopole.

It may be noted that we are dealing with a superrenormalizable theory. Thus the ex-

pression (50) is ultraviolet finite.

We then have

Z =
∞
∑

N=0

1

N !
J̄N

∑

{qa}

N
∏

i=1

∫

d~xi exp

(

−2π

g2

∑ qaqb
|xa − xb|

)

(51)

where the mean fugacity J̄ is given by the formula

J̄ =
8 g6

√
π
s̄

3

2 e−s̄ Θ[ρ̄] (52)

We can now perform the sine-Gordon transform as in section 3, and we write (51) as
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Z =
∫

Dχ(x) exp

[

− g2

32π2

∫

d3x
{

(∇χ)2 − 2M̄2(1 − cosχ)
}

]

(53)

where

M̄2 =
16π2J̄

g2
. (54)

It is important to emphasize in accordance with the discussion of [9], that the quadratic

term
∫

d3x(∇χ)2 in (53) must be understood in a regularised sense, so that the Coulomb

potential between the monopoles is valid only upto distances greater than the core size λ.

In this sense λ is the cut off (lattice spacing) of the sine-Gordon theory.

F. Stability of the dressed monopole

We now discuss, in some more detail than previously, whether the function Θ[ρ̄] which

is used in the definition of the fugacity J̄ in (52) is well defined. This issue is important

because we have already indicated in Section 4 that as we average over ρ(x) the operator

D2[ρ] has negative eigenvalues when ρ corresponds to a single isolated monopole.

We will now argue that D2[ρ̄] is a positive operator. Recall the form of D2[ρ̄] in the

unitary gauge, outside the core of the dressed monopole which we can choose to be at x = 0

D2[ρ̄] = −δµν∇α(A(x, [ρ̄]))∇α(A(x, [ρ̄])) + i
[

F̄ (3)
µν (x, [ρ̄]),

]

(55)

where F̄ (3)
µν (x, [ρ̄]) is related to the magnetic field by B̄

(3)
λ = ǫµνλF̄

(3)
µν and B̄

(3)
λ is given by

B̄
(3)
λ =

∂

∂xλ

∫

d3y
ρ̄(y)

|x− y| (56)

Debye screening means that

B̄
(3)
λ =

xλ

r3
e−Mr f(Mr) (57)

where the function f(x) has the property that for x >> 1, f(x) ∼ 1, and M is the mass gap

related to the Debye length lD by M = 1
lD
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For a nonzero mass gap, the field outside the monopole core cannot be transformed to

the radial form of (26). However close to the core and distances much smaller than the

Debye length lD the field is close to the single monopole field outside the core and may be

cast in the radial gauge. Furthermore at distances much larger than the Debye length, the

field is close to zero and once again one may cast the gauge potential in the radial gauge

trivially (i.e. with K(r) = 1). As mentioned in Section 4 the source of the even parity

S-wave instability is the long range Coulomb field of the monopole. Since screening cuts off

this Coulomb field and replaces it approximately by an exponential, one expects stability.

The situation is in fact similar to that of the Yang-Mills-Higgs system in some respects.

Recall that the S-wave stability of the ’t Hooft-Polyakov monopole is ensured by the fact

that the Higgs field rises exponentially to 1 beyond the core and cancels the negative 1
r2 tail

of the gauge field, preventing the potential in the Schrodinger problem from being negative

at large distances. In our problem the gauge field itself falls off exponentially to zero and

thus the potential in (36) is positive at large distances. In this sense we have a dynamical

Higgs effect.

It is indeed possible to argue that the above argument for stability is self-consistent. Re-

call that Debye screening means that the form of the magnetic field away from the monopole

core is of the form 57. We are unable to determine the precise form of the function f(x),

but we can parametrize it in the following way. Inside the monopole core the magnetic field

in the unitary gauge follows from the form of the single monopole vector potential

B
(3)
i = −x

i

r3
(1 −K(rλ)2) (58)

The function K(x) is given by the solution in [16]. Let us assume that this form of the

magnetic field extends upto r = αλ with some α > λ. The magnetic potential far outside

the core is an exponential, as required by Debye screening which gives

B
(3)
i = −x

i

r3
(1 +Mr) e−Mr (59)

where M is the mass gap generated in the plasma. We assume that this form of the magnetic
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field extends from infinity upto the point r = αλ. This gives the function K in the region

r > αλ

K2(r) = 1 − (1 +Mr)e−Mr r > αλ (60)

We further simplify the problem by replacing the function K(r) inside the core by an expo-

nential so that we get

K2(r) = e−2r/λ r < αλ (61)

The potential which appears in the s-wave stability operator is V (r) = 3K2−1
r2 . This potential

must be continuous at r = α1 which determines α implicitly through the equation

e−2α = 1 − (1 +Mαλ)e−Mαλ (62)

It may be now seen that the potential V (r) is negative in the region 1
2
log 3 λ < r < r2

where r2 may be determined by the above considerations to be the solution of V (r) = 0 for

r > αλ. This is approximately 1.2
M

We now test whether such a potential can have bound states. This may be done by

applying the Bargmann criterion for absence of bound states

∫

dr rV −(r) < 1 (63)

where V −(r) stands for the negative part of the potential. A straightforward numerical

integration then gives the result that the Bargmann bound is satisfied for α < 1.38. The

fact that the critical value of α came out to be greater than one is an evidence for the self

consistency of the picture.

The above considerations are rough : we have made several simplifying assumptions.

However these assumptions are dictated by the physics of the problem. The numbers quoted

above are to be considered as indicative since they will change with different approximations

to the function f(r) and K(r) inside the core. However the above calculation gives a self

consistent argument in favor of the stability of monopoles in a neutral plasma.
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G. Self consistent dynamical generation of monopole size

As mentioned in Section the fugacity of the monopole gas depends on ρ̄ and hence it has

a dependence on the mass gap M and the cutoff λ of the sine-Gordon theory. This means

that the cutoff λ is not independent, but determined in terms of M and g2, i.e.

M = M(λ, g2, z(λ,M)) (64)

implies that

λ =
1

g2
F (
M

g2
) (65)

where F is a function obtained by inverting (64). This equation now fixes the monopole core

size λ as a function of the mass gap M in a self-consistent manner. The above considerations

must be considered as qualitative because the calculation of the function F in (65) is beyond

our present technology.

V. DUAL REPRESENTATION AND THE DISORDER OPERATOR

We now relate the euclidean formalism in terms of disorder operators introduced by ’t

Hooft [4] . In the hamiltonian formalism the Schrodinger picture disorder operator ΦD(~x0) is

defined as an operator which creates a Z2 magnetic vortex at the point ~x0 in two dimensional

space. More specifically it implements a singular gauge transformation Ω[x0] which has the

property that if we consider a closed spatial loop C parametrized by an angle θ one has

Ω[x0](θ + 2π) = −Ω[x0](θ) (66)

when the loop C encloses the point ~x0. If C does not enclose ~x0 the gauge transformation

is single valued. Consider now the two point function of the Heisenberg picture disorder

operators

< Φ†
D(x)ΦD(y) > (67)
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Here x and y stand for three dimensional coordinates (including the euclidean time). This

two point function is then a sum over all configfurations of the gauge fields which have a

Dirac string singularity along a line joining x and y with a monopole of charge 1
2

at the

point y and an antimonopole of charge −1
2

at the point x. It is crucial that the magnetic

charges of these monopoles is half that of the monopoles which populate the vacuum. They

have magnetic charges so that the Dirac string is visible by the lowest electrically charged

quarks which couple to the gauge field.

Repeating the steps which led to the sine-gordon representation with the difference that

we have two external magnetic sources with charges ±1
2

we easily get

< Φ†
D(x)ΦD(y) >=< e

i

2
(χ(y)−χ(x)) > (68)

the average on the right hand side in (68) being performed in the sine-gordon theory. A

similar identification holds for all higher point correlation functions of the disorder operators.

Hence we can identify the disorder operator with

ΦD(x) = e
i

2
χ(x) (69)

In fact the sine-gordon action may be now written in terms of ΦD as

S =
g2

32π2

∫

d3x[∂µΦ†
D∂µΦ +M2((ΦD)2 + (Φ†

D)2)] (70)

upto an irrelevant constant. The field ΦD is not a conventional scalar field, since Φ†
DΦ = 1.

This non-linear Z2 sigma model can be generalized to a linear sigma model by the addition

of the term λ
∫

d3x(Φ†
DΦ − 1)2 to the action (70). The action then exactly has the form

conjectured in [4].

The sine gordon theory thus is itself a dual representation of the original Yang-Mills

theory. The action (70) has the global Z2 symmetry ΦD → Φ†
D which is spontaneously

broken leading to magnetic disorder and confinement. This is simply the symmetry χ→ −χ

of the sine-gordon model. It is clear from the action (70) that the dimensionless coupling

constant is
√

M
g

. This is inversely related to the gauge coupling g as expected in a dual
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formulation. The dual theory is weakly coupled when M
g2 is small. In this limit the minima

of the potential (cos χ) break the Z2 symmetry spontaneously.

Finally we note that the above construction of the disorder operators can be easily

extended to SU(N) gauge theories following the treatment in [7].

VI. CONCLUSIONS

We have argued that in 2+1 dimensional pure Yang-Mills theory Debye screening in a

gas of regularized and dressed Wu-Yang monopoles provides a consistent picture of quark

confinement. We have used the results of [9] that in a three dimensional Coulomb gas

the charge density field always clusters, leading to Debye screening even for arbitrarily

low temperatures. Our line of argument has been self-consistent in nature, because Debye

screening in turn implies a screened magnetic field and hence the stability operator around

a single dressed monopole is expected to have no negative eigenvalues. The mass gap thus

obtained is non-perturbative and determines the monopolesize self-consistently. A related

issue is that the mean configuration ρ̄(x) in the presence of a single monopole source is

in general non-classical and hence the associated scalar potential χ̄(x) does not satisfy a

classical equation. Hence the explicit evaluation of the Wilson loops is not as easily done.

However on general grounds the existence of a mass gap leads to qualitative conclusions

that are similar to the case of the Yang-Mills-Higgs system. Finally we have obtained a

representation of the disorder operators of the theory in terms of the sine-gordon field which

leads to a dual representation of the gauge theory.
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VII. APPENDIX I

In this appendix we state the main results of [9] on the 3-dim. Coulomb gas. Theorem

2.1 in Brydges [9], adapted to our notation states that:

Given any c1 > 0, there exits c2 > 0 such that for 1
c1

≤ g2λ and z ≤ 1
2
c22g

6 (z is the fugacity)

the correlation functions of the density operator exits and clusters exponentially, i.e. there

exist strictly positive constants M(z, g2, λ), c′ = c′(n′) such that for n1 < n′

|〈∏n1

i=1 ρ(xi)
∏n′

j=n1+1 ρ(xj + a)〉 − 〈∏n1

i=1 ρ(xi)〉〈
∏n′

j=n1+1 ρ(xj)〉|

≤ c′ exp
(

− inf
2≤n1<j≤n′

|xi − xj + a| ·M
)

(71)

M(z, g2, λ) is the mass gap whose inverse is the Debye screening length. In the limit g2λ→

∞ one has the classical Debye-Huckel limit M
g2 → 0. If we apply (71) to the 2-point function

of the density, for separation of the order λ, the monopole core size, which is the lattice

spacing for the Coulomb gas we get

|〈∆ρ(0)∆ρ(λ)〉| ≤ c′e−Mλ (72)

where ∆ρ(x) = ρ(x)−〈ρ(x)〉. (72) says that the fluctuations of ρ(x) are bounded and finite.
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