473 research outputs found
Quantum Griffiths phase in CePd(1-x)Rh(x) with x ~ 0.8
The magnetic field dependence of the magnetisation () and the temperature
dependence of the ac susceptibility () of CePd(1-x)Rh(x) single
crystals with are analysed within the frame of the
quantum Griffiths phase scenario, which predicts and
with . All vs and
vs data follow the predicted power-law behaviour. The parameter
, extracted from , is very sensitive to the Rh content
and varies systematically with from -0.1 to 0.4. The value of ,
derived from measurements on a \cpr single crystal, seems to be rather
constant, , in a broad range of temperatures between 0.05
and 2 K and fields up to about 10 T. All observed signatures and the
values are thus compatible with the quantum Griffiths scenario.Comment: 4 pages, 3 figure
Reef Rescue Marine Monitoring Program: Using remote sensing for GBR-wide water quality. Final report for 2012/13 activities
This report delivers management relevant information of flood events and inshore water quality compliance based on tailored temporal and spatial analysis of remote sensing data, carried out by CSIRO as part of the Reef Rescue Marine Monitoring Program (MMP) from 2005 to 2013
Modified Gravity Away from a CDM Background
Within the effective field theory approach to cosmic acceleration, the
background expansion can be specified separately from the gravitational
modifications. We explore the impact of modified gravity in a background
different from a cosmological constant plus cold dark matter (CDM) on
the stability and cosmological observables, including covariance between
gravity and expansion parameters. In No Slip Gravity the more general
background allows more gravitational freedom, including both positive and
negative Planck mass running. We examine the effects on cosmic structure
growth, as well as showing that a viable positive integrated Sachs-Wolfe effect
crosscorrelation easily arises from this modified gravity theory. Using current
data we constrain parameters with a Monte Carlo analysis, finding a maximum
running . We provide the modified {\tt hi\_class} code
publicly on GitHub, now enabling computation and inclusion of the redshift
space distortion observable as well as the No Slip Gravity
modifications.Comment: 14 pages, 13 figures. Matches published version in JCAP, LCDM
discussion adde
Reef Rescue Marine Monitoring Program: Assessment of terrestrial run-off entering the Reef and inshore marine water quality monitoring using earth observation data. Final report for 2010/11 activities
This report delivers management relevant information of flood events and inshore water quality compliance based on tailored temporal and spatial analysis of remote sensing data, carried out by CSIRO as part of the Reef Rescue Marine Monitoring Program (MMP) from 2005 to 2010
Quantum Tricritical Points in NbFe
Quantum critical points (QCPs) emerge when a 2nd order phase transition is
suppressed to zero temperature. In metals the quantum fluctuations at such a
QCP can give rise to new phases including unconventional superconductivity.
Whereas antiferromagnetic QCPs have been studied in considerable detail
ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs
are avoided through either a change to 1st order transitions or through an
intervening spin-density-wave (SDW) phase. Here, we study the prototype of the
second case, NbFe. We demonstrate that the phase diagram can be modelled
using a two-order-parameter theory in which the putative FM QCP is buried
within a SDW phase. We establish the presence of quantum tricritical points
(QTCPs) at which both the uniform and finite susceptibility diverge. The
universal nature of our model suggests that such QTCPs arise naturally from the
interplay between SDW and FM order and exist generally near a buried FM QCP of
this type. Our results promote NbFe as the first example of a QTCP, which
has been proposed as a key concept in a range of narrow-band metals, including
the prominent heavy-fermion compound YbRhSi.Comment: 21 pages including S
Magnetism in Nb(1-y)Fe(2+y) - composition and magnetic field dependence
We present a systematic study of transport and thermodynamic properties of
the Laves phase system NbFe. Our measurements confirm that
Fe-rich samples, as well as those rich in Nb (for ), show
bulk ferromagnetism at low temperature. For stoichiometric NbFe, on the
other hand, magnetization, magnetic susceptibility and magnetoresistance
results point towards spin-density wave (SDW) order, possibly helical, with a
small ordering wavevector \AA. Our results suggest that on
approaching the stoichiometric composition from the iron-rich side,
ferromagnetism changes into long-wavelength SDW order. In this scenario,
changes continuously from 0 to small, finite values at a Lifshitz point in the
phase diagram, which is located near . Further reducing the Fe content
suppresses the SDW transition temperature, which extrapolates to zero at
. Around this Fe content magnetic fluctuations dominate the
temperature dependence of the resistivity and of the heat capacity which
deviate from their conventional Fermi liquid forms, inferring the presence of a
quantum critical point. Because the critical point is located between the SDW
phase associated with stoichiometric NbFe and the ferromagnetic order which
reemerges for very Nb-rich NbFe, the observed temperature dependences could
be attributed both to proximity to SDW order or to ferromagnetism.Comment: 13 pages, 20 figure
Evolution of magnetism in Yb(Rh_(1-x)Co_x)2Si2
We present a study of the evolution of magnetism from the quantum critical
system YbRh2Si2 to the stable trivalent Yb system YbCo2Si2. Single crystals of
Yb(Rh_(1-x)Co_x)2Si2 were grown for 0 < x < 1 and studied by means of magnetic
susceptibility, electrical resistivity, and specific heat measurements, as well
as photoemission spectroscopy. The results evidence a complex magnetic phase
diagram, with a non-monotonic evolution of T_N and two successive transitions
for some compositions resulting in two tricritical points. The strong
similarity with the phase diagram of YbRh2Si2 under pressure indicates that Co
substitution basically corresponds to the application of positive chemical
pressure. Analysis of the data proves a strong reduction of the Kondo
temperature T_K with increasing Co content, T_K becoming smaller than T_N for x
~ 0.5, implying a strong localization of the 4f electrons. Furthermore,
low-temperature susceptibility data confirm a competition between ferromagnetic
and antiferromagnetic exchange. The series Yb(Rh_(1-x)Co_x)2Si2 provides an
excellent experimental opportunity to gain a deeper understanding of the
magnetism at the quantum critical point in the vicinity of YbRh2Si2 where the
antiferromagnetic phase disappears (T_N=>0).Comment: 11 pages, 9 figure
Interplay between Kondo suppression and Lifshitz transitions in YbRhSi at high magnetic fields
We investigate the magnetic field dependent thermopower, thermal
conductivity, resistivity and Hall effect in the heavy fermion metal YbRh2Si2.
In contrast to reports on thermodynamic measurements, we find in total three
transitions at high fields, rather than a single one at 10 T. Using the Mott
formula together with renormalized band calculations, we identify Lifshitz
transitions as their origin. The predictions of the calculations show that all
experimental results rely on an interplay of a smooth suppression of the Kondo
effect and the spin splitting of the flat hybridized bands.Comment: 5 pages, 4 figure
- …
