751 research outputs found

    The Evolution of the Multiplicity of Embedded Protostars II: Binary Separation Distribution & Analysis

    Full text link
    We present the Class I protostellar binary separation distribution based on the data tabulated in the companion paper. We verify the excess of Class I binary stars over solar-type main-sequence stars, especially at separations beyond 500 AU. Although our sources are in nearby star forming regions distributed across the entire sky (including Orion), none of our objects are in a high stellar density environment. The binary separation distribution changes significantly during the Class I phase, and the binary frequency at separations greater than 1000 AU declines steadily with respect to spectral index. Despite these changes, the binary frequency remains constant until the end of the Class I phase, when it drops sharply. We propose a scenario to account for the changes in the Class I binary separation distribution. This scenario postulates that companions with a separation greater than ~1000 AU were ejected during the Class 0 phase, but remain gravitationally bound due to the mass of the envelope. As the envelope dissipates, these companions become unbound and the binary frequency at wide separations declines. This scenario predicts that a large number of Class 0 objects should be non-hierarchical multiple systems, and that many Class I YSOs with a widely separated companion should also have a very close companion. We also find that Class I protostars are not dynamically pristine, and have experienced dynamical evolution before they are visible as Class I objects. For the first time, evidence is presented showing that the Class I binary frequency and the binary separation distribution strongly depend on the star forming environment. The reason for this dependence remains unclear.Comment: 33 pages, 16 figures, accepted by the Astronomical Journa

    Tip-gating Effect in Scanning Impedance Microscopy of Nanoelectronic Devices

    Full text link
    Electronic transport in semiconducting single-wall carbon nanotubes is studied by combined scanning gate microscopy and scanning impedance microscopy (SIM). Depending on the probe potential, SIM can be performed in both invasive and non-invasive mode. High-resolution imaging of the defects is achieved when the probe acts as a local gate and simultaneously an electrostatic probe of local potential. A class of weak defects becomes observable even if they are located in the vicinity of strong defects. The imaging mechanism of tip-gating scanning impedance microscopy is discussed.Comment: 11 pages, 3 figures, to be published in Appl. Phys. Let

    NGC1333/IRAS4: A multiple star formation laboratory

    Get PDF
    We present SCUBA observations of the protomultiple system NGC1333/IRAS4 at 450um and 850um. The 850um map shows significant extended emission which is most probably a remnant of the initial cloud core. At 450um, the component 4A is seen to have an elongated shape suggestive of a disk. Also we confirm that in addition to the 4A and 4B system, there exists another component 4C, which appears to lie out of the plane of the system and of the extended emission. Deconvolution of the beam reveals a binary companion to IRAS4B. Simple considerations of binary dynamics suggest that this triple 4A-4BI-4BII system is unstable and will probably not survive in its current form. Thus IRAS4 provides evidence that systems can evolve from higher to lower multiplicity as they move towards the main sequence. We construct a map of spectral index from the two wavelengths, and comment on the implications of this for dust evolution and temperature differences across the map. There is evidence that in the region of component 4A the dust has evolved, probably by coagulating into larger or more complex grains. Furthermore, there is evidence from the spectral index maps that dust from this object is being entrained in its associated outflow.Comment: 10 pages, 10 figures. To appear in MNRAS. Uses mn.sty. Also available at http://www.astro.phys.ethz.ch/papers/smith/smith_p_m.htm

    High frequency Scanning Gate Microscopy and local memory effect of carbon nanotube transistors

    Full text link
    We use impedance spectroscopy to measure the high frequency properties of single-walled carbon nanotube field effect transistors (swCN-FETs). Furthermore, we extend Scanning Gate Microscopy (SGM) to frequencies up to 15MHz, and use it to image changes in the impedance of swCN-FET circuits induced by the SGM-tip gate. In contrast to earlier reports, the results of both experiments are consistent with a simple RC parallel circuit model of the swCN-FET, with a time constant of 0.3 ms. We also use the SGM tip to show the local nature of the memory effect normally observed in swCN-FETs, implying that nanotube-based memory cells can be miniaturized to dimensions of the order of tens of nm.Comment: 7 pages, 3 figures, to appear in Nano Letter

    Carbon nanotubes as a tip calibration standard for electrostatic scanning probe microscopies

    Full text link
    Scanning Surface Potential Microscopy (SSPM) is one of the most widely used techniques for the characterization of electrical properties at small dimensions. Applicability of SSPM and related electrostatic scanning probe microscopies for imaging of potential distributions in active micro- and nanoelectronic devices requires quantitative knowledge of tip surface contrast transfer. Here we demonstrate the utility of carbon-nanotube-based circuits to characterize geometric properties of the tip in the electrostatic scanning probe microscopies (SPM). Based on experimental observations, an analytical form for the differential tip-surface capacitance is obtained.Comment: 14 pages, 4 figure

    Test for Time Dilation of Intervals Between Pulse Structures in GRBs

    Get PDF
    If γ\gamma-ray bursts are at cosmological distances, then not only their constituent pulses but also the intervals between pulses should be time-dilated. Unlike time-dilation measures of pulse emission, intervals would appear to require negligible correction for redshift of narrower temporal structure from higher energy into the band of observation. However, stretching of pulse intervals is inherently difficult to measure without incurring a timescale-dependent bias since, as time profiles are stretched, more structure can appear near the limit of resolution. This problem is compounded in dimmer bursts because identification of significant structures becomes more problematic. We attempt to minimize brightness bias by equalizing signal-to-noise (s/n) level of all bursts. We analyze wavelet-denoised burst profiles binned to several resolutions, identifying significant fluctuations between pulse structures and interjacent valleys. When bursts are ranked by peak flux, an interval time-dilation signature is evident, but its magnitude and significance are dependent upon temporal resolution and s/n level.Comment: 5 pages in LATeX, REVTEX style, 2 embedded figures. To appear in Third Huntsville GRB Workshop Proceeding
    corecore