343 research outputs found

    A model-based time-reversal of left ventricular motion improves cardiac motion analysis using tagged MRI data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocardial motion is an important observable for the assessment of heart condition. Accurate estimates of ventricular (LV) wall motion are required for quantifying myocardial deformation and assessing local tissue function and viability. Harmonic Phase (HARP) analysis was developed for measuring regional LV motion using tagged magnetic resonance imaging (tMRI) data. With current computer-aided postprocessing tools including HARP analysis, large motions experienced by myocardial tissue are, however, often intractable to measure. This paper addresses this issue and provides a solution to make such measurements possible.</p> <p>Methods</p> <p>To improve the estimation performance of large cardiac motions while analyzing tMRI data sets, we propose a two-step solution. The first step involves constructing a model to describe average systolic motion of the LV wall within a subject group. The second step involves time-reversal of the model applied as a spatial coordinate transformation to digitally relax the contracted LV wall in the experimental data of a single subject to the beginning of systole. Cardiac tMRI scans were performed on four healthy rats and used for developing the forward LV model. Algorithms were implemented for preprocessing the tMRI data, optimizing the model parameters and performing the HARP analysis. Slices from the midventricular level were then analyzed for all systolic phases.</p> <p>Results</p> <p>The time-reversal operation derived from the LV model accounted for the bulk portion of the myocardial motion, which was the average motion experienced within the overall subject population. In analyzing the individual tMRI data sets, removing this average with the time-reversal operation left small magnitude residual motion unique to the case. This remaining residual portion of the motion was estimated robustly using the HARP analysis.</p> <p>Conclusion</p> <p>Utilizing a combination of the forward LV model and its time reversal improves the performance of motion estimation in evaluating the cardiac function.</p

    High-resolution magnetic resonance imaging and diffusion tensor imaging of the porcine temporomandibular joint disc

    Get PDF
    This is the published version. Copyright © 2014 The British Institute of RadiologyObjectives: Diffusion tensor imaging (DTI) is an MRI modality for characterizing the property, microstructural organization and function in tissues such as the brain and spinal cord. Prior to this investigation, DTI had not been adapted for studies of the temporomandibular joint (TMJ) disc. Objectives were to test the feasibility of DTI to evaluate the porcine TMJ disc and to use DTI to observe differences in magnitude of anisotropy of water diffusion between TMJ disc regions. Methods: Five adult pig TMJs were scanned on a 9.4 Tesla horizontal bore MRI scanner using an inductively coupled surface coil. High-resolution gradient-echo and diffusion-weighted spin-echo based images were obtained. The mean diffusivity and fractional anisotropy (FA) were computed in different regions of the disc. Two observers were calibrated to review the two-dimensional and three-dimensional images. Polarized light microscopy was used as the gold standard for collagen fibre orientation. Results: In the sagittal plane, the mean diffusivity was higher in the posterior (1.28±0.10×10−3 mm−2 s−1) and anterior (1.27±0.08×10−3 mm−2 s−1) bands compared with the intermediate zone (0.96±0.01×10−3 mm−2 s−1), and the FA index was also lowest in the intermediate zone. In the coronal plane, the mean diffusivity was higher in the medial (1.42±0.01×10−3 mm−2 s−1) and lateral (1.21±0.12×10−3 mm−2 s−1) aspects than in the centre (1.09±0.08×10−3 mm−2 s−1), and the FA index was also lowest in the centre. Conclusions: DTI is a useful method for non-invasively characterizing the structure/property relationships of the porcine TMJ disc

    Effects of incubation lighting with green or white light on brown layers: hatching performance, feather pecking and hypothalamic expressions of genes related with photoreception, serotonin, and stress systems

    Get PDF
    The aim of this study was to evaluate the effect of 16L:8D photoperiod with green (GREEN) or white (WHITE) lights during incubation on hatching performance, blood melatonin, corticosterone, and serotonin levels, hypothalamic expressions of genes related to photoreception, serotonin, and stress systems in layers in relation with feather pecking behavior. Dark incubation (DARK) was the control. Eggs (n = 1,176) from Brown Nick breeders in 2 batches (n = 588/batch) were incubated in the experiment. A total of 396 female chicks and 261 hens were used at rearing and laying periods until 40 wk. Incubation lighting did not affect hatchability, day-old chick weight, and length, but resulted in a more synchronized hatch as compared with the DARK. The effect of incubation lighting on blood hormones was not significant except for reduced serotonin in the GREEN group at the end of the experiment. There was no effect of incubation lighting on gentle, severe, and aggressive pecking of birds during the early rearing period. From 16 wk, GREEN hens showed increased gentle pecking with increasing age. WHITE hens had the highest gentle pecking frequency at 16 wk while they performed less gentle but higher severe and aggressive pecks at 24 and 32 wk. At hatching, the hypothalamic expression of CRH, 5-HTR1A, and 5-HTR1B was higher for the WHITE group compared with both GREEN and DARK, however, 5-HTT expression was higher in GREEN than WHITE which was similar to DARK. Except for the highest VA opsin expression obtained for WHITE hens at 40 wk of age, there was no change in hypothalamic expression levels of rhodopsin, VA opsin, red, and green opsins at any age. Although blood hormone levels were not consistent, results provide preliminary evidence that incubation lighting modulates the pecking tendencies of laying hens, probably through the observed changes in hypothalamic expression of genes related to the serotonin system and stress. Significant correlations among the hypothalamic gene expression levels supplied further evidence for the associations among photoreception, serotonin, and stress systems

    In-vitro engineering of high modulus cartilage-like constructs.

    Get PDF
    To date, the outcomes of cartilage repair have been inconsistent and have frequently yielded mechanically inferior fibro-cartilage, thereby increasing the chances of damage recurrence. Implantation of constructs with biochemical composition and mechanical properties comparable to natural cartilage could be advantageous for long term repair. This study attempted to create such constructs, in-vitro, using tissue engineering principles. Bovine synoviocytes were seeded on non-woven polyethylene terephthalate fibre scaffolds and cultured in chondrogenic medium for 4 weeks, after which uniaxial compressive loading was applied using an in-house bioreactor for 1 hour per day, at a frequency of 1 Hz, for a further 84 days. The initial loading conditions, determined from the mechanical properties of the immature constructs after 4 weeks in chondrogenic culture, were strains ranging between 13 and 23 %. After 56 days (sustained at 84 days) of loading, the constructs were stained homogenously with Alcian blue and for type-II collagen. Dynamic compressive moduli were comparable to the high end values for native cartilage and proportional to Alcian blue staining intensity. We suggest that these high moduli values were attributable to the bioreactor setup, which caused the loading regime to change as the constructs developed i.e. the applied stress and strain increased with construct thickness and stiffness, providing continued sufficient cell stimulation as further matrix was deposited. Constructs containing cartilage-like matrix with response to load similar to that of native cartilage could produce long-term effective cartilage repair when implanted

    A physarum-inspired approach to supply chain network design

    Get PDF
    A supply chain is a system which moves products from a supplier to customers, which plays a very important role in all economic activities. This paper proposes a novel algorithm for a supply chain network design inspired by biological principles of nutrients’ distribution in protoplasmic networks of slime mould Physarum polycephalum. The algorithm handles supply networks where capacity investments and product flows are decision variables, and the networks are required to satisfy product demands. Two features of the slime mould are adopted in our algorithm. The first is the continuity of flux during the iterative process, which is used in real-time updating of the costs associated with the supply links. The second feature is adaptivity. The supply chain can converge to an equilibrium state when costs are changed. Numerical examples are provided to illustrate the practicality and flexibility of the proposed method algorithm

    Effect of neoadjuvant chemoradiotherapy on health-Related quality of life in esophageal or junctional cancer: Results from the randomized CROSS trial

    Get PDF
    Purpose To compare pre-agreed health-related quality of life (HRQOL) domains in patients with esophageal or junctional cancer who received neoadjuvant chemoradiotherapy (nCRT) followed by surgery or surgery alone. Secondary aims were to examine the effect of nCRT on HRQOL before surgery and the effect of surgery on HRQOL. Patients and Methods Patients were randomly assigned to nCRT (carboplatin plus paclitaxel with concurrent 41.4-Gy radiotherapy) followed by surgery or surgery alone. HRQOL was measured using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire–Core 30 (QLQ-C30) and –Oesophageal Cancer Module (QLQ-OES24) questionnaires pretreatment and at 3, 6, 9, and 12 months postoperatively. The nCRT group also received preoperative questionnaires. Physical functioning (PF; QLQ-C30) and eating problems (EA; QLQ-OES24) were chosen as predefined primary end points. Predefined secondary end points were global QOL (GQOL; QLQ-C30), fatigue (FA; QLQ-C30), and emotional problems (EM; QLQ-OES24). Results A total of 363 patients were analyzed. No statistically significant differences in postoperative HRQOL were found between treatment groups. In the nCRT group, PF, EA, GQOL, FA, and EM scores deteriorated 1 week after nCRT (Cohen’s d: 20.93, P, .001; 0.47, P, .001; 20.84, P, .001; 1.45, P, .001; and 0.32, P = .001, respectively). In both treatment groups, all end points declined 3 months postoperatively compared with baseline (Cohen’s d: 21.00, 0.33, 20.47, 20.34, and 0.33, respectively; all P, .001), followed by a continuous gradual improvement. EA, GQOL, and EM were restored to baseline levels during follow-up, whereas PF and FA remained impaired 1 year postoperatively (Cohen’s d: 0.52 and 20.53, respectively; both P, .001). Conclusion Although HRQOL declined during nCRT, no effect of nCRT was apparent on postoperative HRQOL compared with surgery alone. In addition to the improvement in survival, these findings support the view that nCRT according to the Chemoradiotherapy for Esophageal Cancer Followed by Surgery Study–regimen can be regarded as a standard of care

    Diagnostic utility of snail in metaplastic breast carcinoma

    Get PDF
    Metaplastic breast carcinoma (MBC) is a rare subtype of breast cancer characterized by coexistence of carcinomatous and sarcomatous components. Snail is a nuclear transcription factor incriminated in the transition of epithelial to mesenchymal differentiation of breast cancer. Aberrant Snail expression results in lost expression of the cell adhesion molecule E-cadherin, an event associated with changes in epithelial architecture and invasive growth. We aimed to identify the utility of Snail, and of traditional immunohistochemical markers, in accurate MBC classification and to evaluate clinicopathologic characteristics and outcome
    corecore