43 research outputs found

    IgG and fibrinogen driven nanoparticle aggregation

    Get PDF
    A thorough understanding of how proteins induce nanoparticle (NP) aggregation is crucial when designing in vitro and in vivo assays and interpreting experimental results. This knowledge is also crucial when developing nano-applications and formulation for drug delivery systems. In this study, we found that extraction of immunoglobulin G (IgG) from cow serum results in lower polystyrene NPs aggregation. Moreover, addition of isolated IgG or fibrinogen to fetal cow serum enhanced this aggregation, thus demonstrating that these factors are major drivers of NP aggregation in serum. Counter-intuitively, NP aggregation was inversely dependent on protein concentration; i.e., low protein concentrations induced large aggregates, whereas high protein concentrations induced small aggregates. Protein-induced NP aggregation and aggregate size were monitored by absorbance at 400 nm and dynamic light scattering, respectively. Here, we propose a mechanism behind the protein concentration dependent aggregation; this mechanism involves the effects of multiple protein interactions on the NP surface, surface area limitations, aggregation kinetics, and the influence of other serum proteins.We thank Professor Sara Linse for scientific discussions and advice and Professor Patrik Brundin for enabling access to the light microscope. The project received financial support from Nanometer structure consortium at Lund University (nmC@LU), Lars Hierta Foundation, and the research school FLAK of Lund University

    Bio::Homology::InterologWalk - A Perl module to build putative protein-protein interaction networks through interolog mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interaction (PPI) data are widely used to generate network models that aim to describe the relationships between proteins in biological systems. The fidelity and completeness of such networks is primarily limited by the paucity of protein interaction information and by the restriction of most of these data to just a few widely studied experimental organisms. In order to extend the utility of existing PPIs, computational methods can be used that exploit functional conservation between orthologous proteins across taxa to predict putative PPIs or 'interologs'. To date most interolog prediction efforts have been restricted to specific biological domains with fixed underlying data sources and there are no software tools available that provide a generalised framework for 'on-the-fly' interolog prediction.</p> <p>Results</p> <p>We introduce <monospace>Bio::Homology::InterologWalk</monospace>, a Perl module to retrieve, prioritise and visualise putative protein-protein interactions through an orthology-walk method. The module uses orthology and experimental interaction data to generate putative PPIs and optionally collates meta-data into an Interaction Prioritisation Index that can be used to help prioritise interologs for further analysis. We show the application of our interolog prediction method to the genomic interactome of the fruit fly, <it>Drosophila melanogaster</it>. We analyse the resulting interaction networks and show that the method proposes new interactome members and interactions that are candidates for future experimental investigation.</p> <p>Conclusions</p> <p>Our interolog prediction tool employs the Ensembl Perl API and PSICQUIC enabled protein interaction data sources to generate up to date interologs 'on-the-fly'. This represents a significant advance on previous methods for interolog prediction as it allows the use of the latest orthology and protein interaction data for all of the genomes in Ensembl. The module outputs simple text files, making it easy to customise the results by post-processing, allowing the putative PPI datasets to be easily integrated into existing analysis workflows. The <monospace>Bio::Homology::InterologWalk</monospace> module, sample scripts and full documentation are freely available from the Comprehensive Perl Archive Network (CPAN) under the GNU Public license.</p

    Latent analysis of unmodified biomolecules and their complexes in solution with attomole detection sensitivity

    Get PDF
    The study of biomolecular interactions is central to an understanding of function, malfunction and therapeutic modulation of biological systems, yet often involves a compromise between sensitivity and accuracy. Many conventional analytical steps and the procedures required to facilitate sensitive detection, such as the incorporation of chemical labels, are prone to perturb the complexes under observation. Here we present a 'latent' analysis approach that uses chemical and microfluidic tools to reveal, through highly sensitive detection of a labelled system, the behaviour of the physiologically relevant unlabelled system. We implement this strategy in a native microfluidic diffusional sizing platform, allowing us to achieve detection sensitivity at the attomole level, determine the hydrodynamic radii of biomolecules that vary by over three orders of magnitude in molecular weight, and study heterogeneous mixtures. We illustrate these key advantages by characterizing a complex of an antibody domain in the solution phase and under physiologically relevant conditions.We would like to thank the ERC, BBSRC, Wellcome Trust, Newman Foundation, Winston Churchill Foundation, and Elan Pharmaceuticals for financial support. E.D.G was supported by the MRC (G1002272)

    Alpha1-microglobulin is found both in blood and in most tissues

    No full text
    In this study we demonstrate that, in addition to blood, alpha1-microglobulin (alpha1m) is present in most tissues, including liver, heart, eye, kidney, lung, pancreas, and skeletal muscle. Western blotting of perfused and homogenized rat tissue supernatants revealed alpha1m in its free, monomeric form and in high molecular weight forms, corresponding to the complexes fibronectin-alpha1m and alpha1-inhibitor-3-alpha1m, which have previously been identified in plasma. The liver also contained a series of alpha1m isoforms with apparent molecular masses between 40 and 50 kD. These bands did not react with anti-inter-alpha-inhibitor antibodies, indicating that they do not represent the alpha1m-bikunin precursor protein. Similarly, the heart contained a 45-kD alpha1m band and the kidney a 50-kD alpha1m band. None of these alpha1m isoforms was present in plasma. Immunohistochemical analysis of human tissue demonstrated granular intracellular labeling of alpha1m in hepatocytes and in the proximal epithelial cells of the kidney. In addition, alpha1m immunoreactivity was detected in the interstitial connective tissue of heart and lung and in the adventitia of blood vessels as well as on cell surfaces of cardiocytes. alpha1m mRNA was found in the liver and pancreas by polymerase chain reaction, suggesting that the protein found in other tissues is transported via the bloodstream from the production sites in liver and pancreas. The results of this study indicate that in addition to its role in plasma, alpha1m may have important functions in the interstitium of several tissues. (J Histochem Cytochem 46:887-893, 1998

    Alpha1-microglobulin chromophores are located to three lysine residues semiburied in the lipocalin pocket and associated with a novel lipophilic compound.

    No full text
    Alpha1-microglobulin (alpha1m) is an electrophoretically heterogeneous plasma protein. It belongs to the lipocalin superfamily, a group of proteins with a three-dimensional (3D) structure that forms an internal hydrophobic ligand-binding pocket. Alpha1m carries a covalently linked unidentified chromophore that gives the protein a characteristic brown color and extremely heterogeneous optical properties. Twenty-one different colored tryptic peptides corresponding to residues 88-94, 118-121, and 122-134 of human alpha1m were purified. In these peptides, the side chains of Lys92, Lys118, and Lys130 carried size heterogeneous, covalently attached, unidentified chromophores with molecular masses between 122 and 282 atomic mass units (amu). In addition, a previously unknown uncolored lipophilic 282 amu compound was found strongly, but noncovalently associated with the colored peptides. Uncolored tryptic peptides containing the same Lys residues were also purified. These peptides did not carry any additional mass (i.e., chromophore) suggesting that only a fraction of the Lys92, Lys118, and Lys130 are modified. The results can explain the size, charge, and optical heterogeneity of alpha1m. A 3D model of alpha1m, based on the structure of rat epididymal retinoic acid-binding protein (ERABP), suggests that Lys92, Lys118, and Lys130 are semiburied near the entrance of the lipocalin pocket. This was supported by the fluorescence spectra of alpha1m under native and denatured conditions, which indicated that the chromophores are buried, or semiburied, in the interior of the protein. In human plasma, approximately 50% of alpha1m is complex bound to IgA. Only the free alpha1m carried colored groups, whereas alpha1m linked to IgA was uncolored
    corecore