369 research outputs found

    Migration Routes of New World Sanderlings (Calidris alba)

    Get PDF
    We color-marked Sanderlings (Calidris alba Pallas) at 19 locations in 6 countries in the New World and coordinated a network of volunteers to locate banded individuals in migration over a five-year period. The observers reported 252 independent sightings of birds in countries different from the country of banding. Sanderlings that migrate north to the Arctic from Chile and Peru travel principally through the central corridor (Texas and northward) of the United States and Canada; smaller numbers follow the Pacific coast. A few migrate north from the Pacific coast of South America along the Atlantic coast of the United States. Southbound from the Arctic to coastal Chile and Peru, many individuals switch eastward to stopovers on the Atlantic coast, including birds that migrated north along the U.S. Pacific coast. Sanderlings banded in Brazil during the nonbreeding period appear only on the U.S. Atlantic coast in migration. Our results emphasize the individual nature of migration. We found considerable heterogeneity in migratory behavior among individuals that spend the nonbreeding season together on the same beaches. Individuals from widely separated nonbreeding sites often shared similar pathways. In this species and perhaps in others, no simple single migratory route connects breeding with nonbreeding regions

    Leader Behaviors as Mediators of the Leader Characteristics - Follower Satisfaction Relationship

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this record.This study examined two potential mediators through which leaders transmit their position power into an effectiveness outcome. Drawing upon recent work integrating trait, situational, and behavioral theories of leadership effectiveness, we hypothesized and tested a model specifying that the interactive effects of leader position power and leader political skill on follower satisfaction would be mediated by followers’ perceptions of leaders’ initiating structure and consideration behaviors. Specifically, this model indicates that leaders who are both in powerful positions and politically skilled are perceived to initiate more structure and demonstrate more consideration for their followers than their nonpolitically skilled counterparts, which, in turn, positively impacts followers’ satisfaction (i.e., an indication of subjective leadership effectiveness). Utilizing 190 leaders and 476 followers, we found support for the hypothesized model. Contributions to various literatures, strengths, limitations, and practical implications are discussed

    "I couldn't do this with opposition from my colleagues": A qualitative study of physicians' experiences as clinical tutors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical contact in the early curriculum and workplace learning with active tutorship are important parts of modern medical education. In a previously published study, we found that medical students' tutors experienced a heavier workload, less reasonable demands and less encouragement, than students. The aim of this interview study was to further illuminate physicians' experiences as clinical tutors.</p> <p>Methods</p> <p>Twelve tutors in the Early Professional Contact course were interviewed. In the explorative interviews, they were asked to reflect upon their experiences of working as tutors in this course. Systematic text condensation was used as the analysis method.</p> <p>Results</p> <p>In the analysis, five main themes of physicians' experiences as clinical tutors in the medical education emerged: <it>(a) Pleasure and stimulation</it>. Informants appreciated tutorship and meeting both students and fellow tutors, <it>(b) Disappointment and stagnation</it>. Occasionally, tutors were frustrated and expressed negative feelings, <it>(c) Demands and duty</it>. Informants articulated an ambition to give students their best; a desire to provide better medical education but also a duty to meet demands of the course management, <it>(d) Impact of workplace relations</it>. Tutoring was made easier when the clinic's management provided active support and colleagues accepted students at the clinic, and <it>(e) Multitasking difficulties</it>. Combining several duties with those of a tutorship was often reported as difficult.</p> <p>Conclusions</p> <p>It is important that tutors' tasks are given adequate time, support and preparation. Accordingly, it appears highly important to avoid multitasking and too heavy a workload among tutors in order to facilitate tutoring. A crucial factor is acceptance and active organizational support from the clinic's management. This implies that tutoring by workplace learning in medical education should play an integrated and accepted role in the healthcare system.</p

    Quantum ergodicity for graphs related to interval maps

    Full text link
    We prove quantum ergodicity for a family of graphs that are obtained from ergodic one-dimensional maps of an interval using a procedure introduced by Pakonski et al (J. Phys. A, v. 34, 9303-9317 (2001)). As observables we take the L^2 functions on the interval. The proof is based on the periodic orbit expansion of a majorant of the quantum variance. Specifically, given a one-dimensional, Lebesgue-measure-preserving map of an interval, we consider an increasingly refined sequence of partitions of the interval. To this sequence we associate a sequence of graphs, whose directed edges correspond to elements of the partitions and on which the classical dynamics approximates the Perron-Frobenius operator corresponding to the map. We show that, except possibly for subsequences of density 0, the eigenstates of the quantum graphs equidistribute in the limit of large graphs. For a smaller class of observables we also show that the Egorov property, a correspondence between classical and quantum evolution in the semiclassical limit, holds for the quantum graphs in question.Comment: 20 pages, 1 figur

    High (but Not Low) Urinary Iodine Excretion Is Predicted by Iodine Excretion Levels from Five Years Ago

    Get PDF
    Background: It has not been investigated whether there are associations between urinary iodine (UI) excretion measurements some years apart, nor whether such an association remains after adjustment for nutritional habits. The aim of the present study was to investigate the relation between iodine-creatinine ratio (ICR) at two measuring points 5 years apart. Methods: Data from 2,659 individuals from the Study of Health in Pomerania were analyzed. Analysis of covariance and Poisson regressions were used to associate baseline with follow-up ICR. Results: Baseline ICR was associated with follow-up ICR. Particularly, baseline ICR >300 mu g/g was related to an ICR >300 mu g/g at follow-up (relative risk, RR: 2.20; p < 0.001). The association was stronger in males (RR: 2.64; p < 0.001) than in females (RR: 1.64; p = 0.007). In contrast, baseline ICR <100 mu g/g was only associated with an ICR <100 mu g/g at follow-up in males when considering unadjusted ICR. Conclusions: We detected only a weak correlation with respect to low ICR. Studies assessing iodine status in a population should take into account that an individual with a low UI excretion in one measurement is not necessarily permanently iodine deficient. On the other hand, current high ICR could have been predicted by high ICR 5 years ago. Copyright (C) 2011 S. Karger AG, Base

    VLTI-MATISSE chromatic aperture-synthesis imaging of η Carinae\u27s stellar wind across the Br α line: Periastron passage observations in February 2020

    Get PDF
    Context. Eta Carinae is a highly eccentric, massive binary system (semimajor axis ~15.5 au) with powerful stellar winds and a phase-dependent wind-wind collision (WWC) zone. The primary star, η Car A, is a luminous blue variable (LBV); the secondary, η Car B, is a Wolf-Rayet or O star with a faster but less dense wind. Aperture-synthesis imaging allows us to study the mass loss from the enigmatic LBV η Car. Understanding LBVs is a crucial step toward improving our knowledge about massive stars and their evolution. Aims. Our aim is to study the intensity distribution and kinematics of η Car\u27s WWC zone. Methods. Using the VLTI-MATISSE mid-infrared interferometry instrument, we perform Brα imaging of η Car\u27s distorted wind. Results. We present the first VLTI-MATISSE aperture-synthesis images of η Car A\u27s stellar windin several spectral channels distributed across the Brα 4.052 μm line (spectral resolving power R ~ 960). Our observations were performed close to periastron passage in February 2020 (orbital phase ~ 14.0022). The reconstructed iso-velocity images show the dependence of the primary stellar wind on wavelength or line-of-sight (LOS) velocity with a spatial resolution of 6 mas (~14 au). The radius of the faintest outer wind regions is ~26 mas (~60 au). At several negative LOS velocities, the primary stellar wind is less extended to the northwest than in other directions. This asymmetry is most likely caused by the WWC. Therefore, we see both the velocity field of the undisturbed primary wind and the WWC cavity. In continuum spectral channels, the primary star wind is more compact than in line channels. A fit of the observed continuum visibilities with the visibilities of a stellar wind CMFGEN model (CMFGEN is an atmosphere code developed to model the spectra of a variety of objects) provides a full width at half maximum fit diameter of the primary stellar wind of 2.84 ± 0.06 mas (6.54 ± 0.14 au). We comparethe derived intensity distributions with the CMFGEN stellar wind model and hydrodynamic WWC models

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE\u27s sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-calendar years (kt-MW-CY), where calendar years include an assumption of 57% accelerator uptime based on past accelerator performance at Fermilab. The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 4σ (5σ) level with a 66 (100) kt-MW-CY far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters, with a median sensitivity of 3σ for almost all true δCP values after only 24 kt-MW-CY. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ level with a 100 kt-MW-CY exposure for the maximally CP-violating values δCP=±π/2. Additionally, the dependence of DUNE\u27s sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    A Multi-Site Analysis of the Prevalence of Food Insecurity in the United States, before and during the COVID-19 Pandemic

    Get PDF
    Background: The coronavirus disease 2019 (COVID-19) pandemic profoundly affected food systems including food security. Understanding how the COVID-19 pandemic impacted food security is important to provide support and identify long-term impacts and needs. Objective: The National Food Access and COVID research Team (NFACT) was formed to assess food security over different US study sites throughout the pandemic, using common instruments and measurements. This study presents results from 18 study sites across 15 states and nationally over the first year of the COVID-19 pandemic. Methods: A validated survey instrument was developed and implemented in whole or part through an online survey of adults across the sites throughout the first year of the pandemic, representing 22 separate surveys. Sampling methods for each study site were convenience, representative, or high-risk targeted. Food security was measured using the USDA 6-item module. Food security prevalence was analyzed using ANOVA by sampling method to assess statistically significant differences. Results: Respondents (n = 27,168) indicate higher prevalence of food insecurity (low or very low food security) since the COVID-19 pandemic, compared with before the pandemic. In nearly all study sites, there is a higher prevalence of food insecurity among Black, Indigenous, and People of Color (BIPOC), households with children, and those with job disruptions. The findings demonstrate lingering food insecurity, with high prevalence over time in sites with repeat cross-sectional surveys. There are no statistically significant differences between convenience and representative surveys, but a statistically higher prevalence of food insecurity among high-risk compared with convenience surveys. Conclusions: This comprehensive study demonstrates a higher prevalence of food insecurity in the first year of the COVID-19 pandemic. These impacts were prevalent for certain demographic groups, and most pronounced for surveys targeting high-risk populations. Results especially document the continued high levels of food insecurity, as well as the variability in estimates due to the survey implementation method

    Low-density star cluster formation: Discovery of a young faint fuzzy on the outskirts of the low-mass spiral galaxy NGC 247

    Get PDF
    The classical globular clusters found in all galaxy types have half-light radii of rh ~2-4 pc, which have been tied to formation in the dense cores of giant molecular clouds. Some old star clusters have larger sizes, and it is unclear if these represent a fundamentally different mode of low-density star cluster formation. We report the discovery of a rare, young \u27faint fuzzy\u27 star cluster, NGC 247-SC1, on the outskirts of the low-mass spiral galaxy NGC 247 in the nearby Sculptor group, and measure its radial velocity using Keck spectroscopy. We use Hubble Space Telescope imaging to measure the cluster half-light radius of rh ≃ 12 pc and a luminosity of LV ≃ 4 × 105Lθ. We produce a colour-magnitude diagram of cluster stars and compare to theoretical isochrones, finding an age of ≃300 Myr, a metallicity of [Z/H] ~-0.6 and an inferred mass of M∗ ≃ 9 × 104Mθ. The narrow width of blue-loop star magnitudes implies an age spread of ≲50 Myr, while no old red-giant branch stars are found, so SC1 is consistent with hosting a single stellar population, modulo several unexplained bright \u27red straggler\u27 stars. SC1 appears to be surrounded by tidal debris, at the end of an ∼2 kpc long stellar filament that also hosts two low-mass, low-density clusters of a similar age. We explore a link between the formation of these unusual clusters and an external perturbation of their host galaxy, illuminating a possible channel by which some clusters are born with large sizes

    Overview of the MOSAiC expedition: Physical oceanography

    Get PDF
    Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean
    corecore