24 research outputs found
CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer
Pancreatic ductal adenocarcinoma (PDA) is characterized by abundant desmoplasia and poor tissue perfusion. These features are proposed to limit the access of therapies to neoplastic cells and blunt treatment efficacy. Indeed, several agents that target the PDA tumor microenvironment promote concomitant chemotherapy delivery and increased antineoplastic response in murine models of PDA. Prior studies could not determine whether chemotherapy delivery or microenvironment modulation per se were the dominant features in treatment response, and such information could guide the optimal translation of these preclinical findings to patients. To distinguish between these possibilities, we used a chemical inhibitor of cytidine deaminase to stabilize and thereby artificially elevate gemcitabine levels in murine PDA tumors without disrupting the tumor microenvironment. Additionally, we used the FG-3019 monoclonal antibody (mAb) that is directed against the pleiotropic matricellular signaling protein connective tissue growth factor (CTGF/CCN2). Inhibition of cytidine deaminase raised the levels of activated gemcitabine within PDA tumors without stimulating neoplastic cell killing or decreasing the growth of tumors, whereas FG-3019 increased PDA cell killing and led to a dramatic tumor response without altering gemcitabine delivery. The response to FG-3019 correlated with the decreased expression of a previously described promoter of PDA chemotherapy resistance, the X-linked inhibitor of apoptosis protein. Therefore, alterations in survival cues following targeting of tumor microenvironmental factors may play an important role in treatment responses in animal models, and by extension in PDA patients
nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer
Nanoparticle albumin-bound (nab)-paclitaxel, an albumin-stabilized paclitaxel formulation, demonstrates clinical activity when administered in combination with gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma (PDA). The limited availability of patient tissue and exquisite sensitivity of xenografts to chemotherapeutics have limited our ability to address the mechanistic basis of this treatment regimen. Here, we used a mouse model of PDA to show that the coadministration of nab-paclitaxel and gemcitabine uniquely demonstrates evidence of tumor regression. Combination treatment increases intratumoral gemcitabine levels attributable to a marked decrease in the primary gemcitabine metabolizing enzyme, cytidine deaminase. Correspondingly, paclitaxel reduced the levels of cytidine deaminase protein in cultured cells through reactive oxygen species-mediated degradation, resulting in the increased stabilization of gemcitabine. Our findings support the concept that suboptimal intratumoral concentrations of gemcitabine represent a crucial mechanism of therapeutic resistance in PDA and highlight the advantages of genetically engineered mouse models in preclinical therapeutic trials. SIGNIFICANCE: This study provides mechanistic insight into the clinical cooperation observed between gemcitabine and nab-paclitaxel in the treatment of pancreatic cancer
Synthesis and in Vitro and in Vivo Pharmacological Evaluation of New 4-Aminoquinoline-Based Compounds
[Image: see text] A new class of 4-aminoquinolines was synthesized and evaluated in vitro for antiplasmodial activity against both the chloroquine-sensitive (3D7) and -resistant (K1 and W2) strains. The most active compounds 3c–3e had acceptable cytotoxicity but showed strong inhibition toward a panel of cytochrome P450 enzymes in vitro. Pharmacokinetic studies on 3d and 3e in mice showed that they had moderate half-life (4–6 h) and low oral bioavailability. The front runner compound 3d exhibited moderate inhibition of the malaria parasite on P. berghei infected mice following oral administration (5 mg/kg), achieving reduction of parasitemia population by 47% on day 7
Identification of Resistance Pathways Specific to Malignancy Using Organoid Models of Pancreatic Cancer
PURPOSE: KRAS is mutated in the majority of pancreatic ductal adenocarcinoma. MAPK and PI3K-AKT are primary KRAS effector pathways, but combined MAPK and PI3K inhibition has not been demonstrated to be clinically effective to date. We explore the resistance mechanisms uniquely employed by malignant cells. EXPERIMENTAL DESIGN: We evaluated the expression and activation of receptor tyrosine kinases in response to combined MEK and AKT inhibition in KPC mice and pancreatic ductal organoids. Additionally, we sought to determine the therapeutic efficacy of targeting resistance pathways induced by MEK and AKT inhibition in order to identify malignant-specific vulnerabilities. RESULTS: Combined MEK and AKT inhibition modestly extended the survival of KPC mice and increased Egfr and ErbB2 phosphorylation levels. Tumor organoids, but not their normal counterparts, exhibited elevated phosphorylation of ERBB2 and ERBB3 after MEK and AKT blockade. A pan-ERBB inhibitor synergized with MEK and AKT blockade in human PDA organoids, whereas this was not observed for the EGFR inhibitor Erlotinib. Combined MEK and ERBB inhibitor treatment of human organoid orthotopic xenografts was sufficient to cause tumor regression in short-term intervention studies. CONCLUSIONS: Analyses of normal and tumor pancreatic organoids revealed the importance of ERBB activation during MEK and AKT blockade primarily in the malignant cultures. The lack of ERBB hyperactivation in normal organoids suggests a larger therapeutic index. In our models pan-ERBB inhibition was synergistic with dual inhibition of MEK and AKT and the combination of a pan-ERBB inhibitor with MEK antagonists showed the highest activity both in vitro and in vivo
Paclitaxel and CYC3, an aurora kinase A inhibitor, synergise in pancreatic cancer cells but not bone marrow precursor cells
BACKGROUND: Amplification of aurora kinase A (AK-A) overrides the mitotic spindle assembly checkpoint, inducing resistance to taxanes. RNA interference targeting AK-A in human pancreatic cancer cell lines enhanced taxane chemosensitivity. In this study, a novel AK-A inhibitor, CYC3, was investigated in pancreatic cancer cell lines, in combination with paclitaxel. METHODS: Western blot, flow cytometry and immunostaining were used to investigate the specificity of CYC3. Sulforhodamine B staining, time-lapse microscopy and colony-formation assays were employed to evaluate the cytotoxic effect of CYC3 and paclitaxel. Human colony-forming unit of granulocyte and macrophage (CFU-GM) cells were used to compare the effect in tumour and normal tissue. RESULTS: CYC3 was shown to be a specific AK-A inhibitor. Three nanomolar paclitaxel (growth inhibition 50% (GI(50)) 3 nℳ in PANC-1, 5.1 nℳ in MIA PaCa-2) in combination with 1 μℳ CYC3 (GI(50) 1.1 μℳ in MIA PaCa2 and 2 μℳ in PANC-1) was synergistic in inhibiting pancreatic cell growth and causing mitotic arrest, achieving similar effects to 10-fold higher concentrations of paclitaxel (30 nℳ). In CFU-GM cells, the effect of the combination was simply additive, displaying significantly less myelotoxicity compared with high concentrations of paclitaxel (30 nℳ; 60–70% vs 100% inhibition). CONCLUSION: The combination of lower doses of paclitaxel and CYC3 merits further investigation with the potential for an improved therapeutic index in vivo
Assessment of activity levels for CYP2D6*1, CYP2D6*2, and CYP2D6*41 genes by population pharmacokinetics of dextromethorphan
The pharmacokinetics of dextromethorphan (DM) is markedly influenced by cytochrome P450 2D6 (CYP2D6) enzyme polymorphisms. The aim of this study was to quantify the effects of the CYP2D6*1, *2, and *41 variants on DM metabolism in vivo and to identify other sources of pharmacokinetic variability. Concentrations of DM and dextrorphan (DO) in plasma and urine were evaluated in 36 healthy Caucasian men. These volunteers participated in three clinical studies and received a single oral dose of 30 mg DM-HBr. Data were modeled simultaneously using the population pharmacokinetics NONMEM software. A five-compartment model adequately described the data. The activity levels of the alleles assessed differed significantly. The clearance attributable to an individual CYP2D6*1 copy was 2.5-fold higher as compared with CYP2D6*2 (5,010 vs. 2,020 l/h), whereas the metabolic activity of CYP2D6*41 was very low (85 l/h). Urinary pH was confirmed as a significant covariate for DM renal clearance. These results refine genotype-based predictions of pharmacokinetics for DM and presumably for other CYP2D6 substrates as well