105,918 research outputs found

    Tuning toroidal dipole resonances in dielectric metamolecules by an additional electric dipolar response

    Full text link
    With the rise of artificial magnetism and metamaterials, the toroidal family recently attracts more attention for its unique properties. Here we propose an all-dielectric pentamer metamolecule consisting of nano-cylinders with two toroidal dipolar resonances, whose frequencies, EM distributions and Q factor can be efficiently tuned due to the additional electric dipole mode offered by a central cylinder. To further reveal the underlying coupling effects and formation mechanism of toroidal responses, the multiple scattering theory is adopted. It is found that the first toroidal dipole mode, which can be tuned from 2.21 to 3.55 μ\mum, is mainly induced by a collective electric dipolar resonance, while the second one, which can be tuned from 1.53 to 1.84 μ\mum, relies on the cross coupling of both electric and magnetic dipolar responses. The proposed low-loss metamolecule and modes coupling analyses may pave the way for active design of toroidal responses in advanced optical devices.Comment: 14 pages, 9 figure

    Comparison of differential gain in single quantum well and bulk double heterostructure lasers

    Get PDF
    The differential gain in single quantum well and bulk double heterostructure lasers is compared. In variance with previous predictions, no differential gain enhancement is found in single quantum well structure lasers at room temperature. Only at low temperatures do the quantum well lasers possess higher differential gain than bulk double heterostructure lasers. The results have important implications in the area of high speed phenomena for these devices

    A comparison of amplitude-phase coupling and linewidth enhancement in semiconductor quantum-well and bulk lasers

    Get PDF
    The amplitude-phase coupling factor α (linewidth enhancement factor) is compared for typical semiconductor quantum-well and bulk double heterostructure lasers. As a direct consequence of the reduction of the differential gain, there is no reduction of α in single-quantum-well lasers compared to bulk lasers. The number of quantum wells strongly affects the amplitude-phase coupling in quantum-well lasers. It is shown that the interband transition induced amplitude-phase coupling dominates that induced by the plasma effect of carriers in typical quantum-well lasers. By considering the spontaneous emission factor in the spectral linewidth, the authors show that there is an optimal number of quantum wells for achieving the narrowest spectral linewidth

    Very High Modulation Efficiency of Ultralow Threshold Current Single Quantum Well InGaAs Lasers

    Get PDF
    A record high current modulation efficiency of 5 GHz/[sqrt](mA) has been demonstrated in an ultralow threshold strained layer single quantum well InGaAs laser

    Mode-locking of incommensurate phase by quantum zero point energy in the Frenkel-Kontorova model

    Get PDF
    In this paper, it is shown that a configuration modulated system described by the Frenkel-Kontorova model can be locked at an incommensurate phase when the quantum zero point energy is taken into account. It is also found that the specific heat for an incommensurate phase shows different parameter-dependence in sliding phase and pinning phase. These findings provide a possible way for experimentalists to verify the phase transition by breaking of analyticity.Comment: 6 pages in Europhys style, 3 eps figure

    Is Gravitational Lensing by Intercluster Filaments Always Negligible?

    Full text link
    Intercluster filaments negligibly contribute to the weak lensing signal in general relativity (GR), γN104103\gamma_{N}\sim 10^{-4}-10^{-3}. In the context of relativistic modified Newtonian dynamics (MOND) introduced by Bekenstein, however, a single filament inclined by 45\approx 45^\circ from the line of sight can cause substantial distortion of background sources pointing towards the filament's axis (κ=γ=(1A1)/20.01\kappa=\gamma=(1-A^{-1})/2\sim 0.01); this is rigorous for infinitely long uniform filaments, but also qualitatively true for short filaments (30\sim 30Mpc), and even in regions where the projected matter density of the filament is equal to zero. Since galaxies and galaxy clusters are generally embedded in filaments or are projected on such structures, this contribution complicates the interpretation of the weak lensing shear map in the context of MOND. While our analysis is of mainly theoretical interest providing order-of-magnitude estimates only, it seems safe to conclude that when modeling systems with anomalous weak lensing signals, e.g. the "bullet cluster" of Clowe et al., the "cosmic train wreck" of Abell 520 from Mahdavi et al., and the "dark clusters" of Erben et al., filamentary structures might contribute in a significant and likely complex fashion. On the other hand, our predictions of a (conceptual) difference in the weak lensing signal could, in principle, be used to falsify MOND/TeVeS and its variations.Comment: 11 pages, 6 figures, published versio
    corecore