4,165 research outputs found
Accelerated black holes in an anti-de Sitter universe
The C-metric is one of few known exact solutions of Einstein's field
equations which describes the gravitational field of moving sources. For a
vanishing or positive cosmological constant, the C-metric represents two
accelerated black holes in asymptotically flat or de Sitter spacetime. For a
negative cosmological constant the structure of the spacetime is more
complicated. Depending on the value of the acceleration, it can represent one
black hole or a sequence of pairs of accelerated black holes in the spacetime
with an anti-de Sitter-like infinity. The global structure of this spacetime is
analyzed and compared with an empty anti-de Sitter universe. It is illustrated
by 3D conformal-like diagrams.Comment: 14 pages, 17 figures [see
http://utf.mff.cuni.cz/~krtous/physics/CADS/ for the version with the high
quality figures and for related animations and interactive 3D diagrams
Perceptual processing advantages for trauma-related visual cues in post-traumatic stress disorder
BACKGROUND: Intrusive re-experiencing in post-traumatic stress disorder (PTSD) comprises distressing sensory impressions from the trauma that seem to occur 'out of the blue'. A key question is how intrusions are triggered. One possibility is that PTSD is characterized by a processing advantage for stimuli that resemble those that accompanied the trauma, which would lead to increased detection of such cues in the environment. METHOD: We used a blurred picture identification task in a cross-sectional (n=99) and a prospective study (n=221) of trauma survivors. RESULTS: Participants with acute stress disorder (ASD) or PTSD, but not trauma survivors without these disorders, identified trauma-related pictures, but not general threat pictures, better than neutral pictures. There were no group differences in the rate of trauma-related answers to other picture categories. The relative processing advantage for trauma-related pictures correlated with re-experiencing and dissociation, and predicted PTSD at follow-up. CONCLUSIONS: A perceptual processing bias for trauma-related stimuli may contribute to the involuntary triggering of intrusive trauma memories in PTSD
Integration of the Friedmann equation for universes of arbitrary complexity
An explicit and complete set of constants of the motion are constructed
algorithmically for Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) models
consisting of an arbitrary number of non-interacting species. The inheritance
of constants of the motion from simpler models as more species are added is
stressed. It is then argued that all FLRW models admit what amounts to a unique
candidate for a gravitational epoch function (a dimensionless scalar invariant
derivable from the Riemann tensor without differentiation which is monotone
throughout the evolution of the universe). The same relations that lead to the
construction of constants of the motion allow an explicit evaluation of this
function. In the simplest of all models, the CDM model, it is shown
that the epoch function exists for all models with , but for
almost no models with .Comment: Final form to appear in Physical Review D1
Expanding perfect fluid generalizations of the C-metric
We reexamine Petrov type D gravitational fields generated by a perfect fluid
with spatially homogeneous energy density and in which the flow lines form a
timelike non-shearing and non-rotating congruence. It is shown that the
anisotropic such spacetimes, which comprise the vacuum C-metric as a limit
case, can have \emph{non-zero} expansion, contrary to the conclusion in the
original investigation by Barnes (Gen. Rel. Grav. 4, 105 (1973)). This class
consists of cosmological models with generically one and at most two Killing
vectors. We construct their line element and discuss some important properties.
The methods used in this investigation incite to deduce testable criteria
regarding shearfree normality and staticity op Petrov type spacetimes in
general, which we add in an appendix.Comment: 16 pages, extended and amended versio
Lagrangian description of fluid flow with pressure in relativistic cosmology
The Lagrangian description of fluid flow in relativistic cosmology is
extended to the case of flow accelerated by pressure. In the description, the
entropy and the vorticity are obtained exactly for the barotropic equation of
state. In order to determine the metric, the Einstein equation is solved
perturbatively, when metric fluctuations are small but entropy inhomogeneities
are large. Thus, the present formalism is applicable to the case when the
inhomogeneities are small in the large scale but locally nonlinear.Comment: 11 pages (RevTeX); accepted for publication in Phys. Rev.
Vacuum Solutions of Einstein's Equations in Parabolic Coordinates
We present a simple method to obtain vacuum solutions of Einstein's equations
in parabolic coordinates starting from ones with cylindrical symmetries.
Furthermore, a generalization of the method to a more general situation is
given together with a discussion of the possible relations between our method
and the Belinsky-Zakharov soliton-generating solutions.Comment: 15 pages, version published in Class. Quantum Gra
Quantum-Classical Reentrant Relaxation Crossover in Dy2Ti2O7 Spin-Ice
We have studied spin relaxation in the spin ice compound Dy2Ti2O7 through
measurements of the a.c. magnetic susceptibility. While the characteristic spin
relaxation time is thermally activated at high temperatures, it becomes almost
temperature independent below Tcross ~ 13 K, suggesting that quantum tunneling
dominates the relaxation process below that temperature. As the low-entropy
spin ice state develops below Tice ~ 4 K, the spin relaxation time increases
sharply with decreasing temperature, suggesting the emergence of a collective
degree of freedom for which thermal relaxation processes again become important
as the spins become highly correlated
A local characterisation for static charged black holes
We obtain a purely local characterisation that singles out the
Majumdar-Papapetrou class, the near-horizon Bertotti-Robinson geometry and the
Reissner-Nordstr\"om exterior solution, together with its plane and hyperbolic
counterparts, among the static electrovacuum spacetimes. These five classes are
found to form the whole set of static Einstein-Maxwell fields without sources
and conformally flat space of orbits, this is, the conformastat electrovacuum
spacetimes. The main part of the proof consists in showing that a functional
relationship between the gravitational and electromagnetic potentials must
always exist. The classification procedure provides also an improved
characterisation of Majumdar-Papapetrou, by only requiring a conformally flat
space of orbits with a vanishing Ricci scalar of the usual conveniently
rescaled 3-metric. A simple global consideration allows us to state that the
asymptotically flat subset of the Majumdar-Papapetrou class and the
Reissner-Nordstr\"om exterior solution are the only asymptotically flat
conformastat electrovacuum spacetimes.Comment: LaTeX; 31 pages. Uses iopart style file
- …