1,808 research outputs found

    A Mini-survey of X-ray Point Sources in Starburst and Non-Starburst Galaxies

    Get PDF
    We present a comparison of X-ray point source luminosity functions of 3 starburst galaxies (the Antennae, M82, and NGC 253) and 4 non-starburst spiral galaxies (NGC 3184, NGC 1291, M83, and IC 5332). We find that the luminosity functions of the starbursts are flatter than those of the spiral galaxies; the starbursts have relatively more sources at high luminosities. This trend extends to early-type galaxies which have steeper luminosity functions than spirals. We show that the luminosity function slope is correlated with 60 micron luminosity, a measure of star formation. We suggest that the difference in luminosity functions is related to the age of the X-ray binary populations and present a simple model which highlights how the shape of the luminosity distribution is affected by the age of the underlying X-ray binary population.Comment: 8 pages, 4 figures. accepted for publication in Ap

    Solar variability indications from Nimbus 7 satellite data

    Get PDF
    The cavity pyrheliometer sensor of the Nimbus 7 Earth Radiation Experiment indicated low-level variability of the total solar irradiance. The variability appears to be inversely correlated with common solar activity indicators in an event sense. the limitations of the measuring system and available data sets are described

    Widespread HCO emission in the M82's nuclear starburst

    Get PDF
    We present a high-resolution (~ 5'') image of the nucleus of M82 showing the presence of widespread emission of the formyl radical (HCO). The HCO map, the first obtained in an external galaxy, reveals the existence of a structured disk of ~ 650 pc full diameter. The HCO distribution in the plane mimics the ring morphology displayed by other molecular/ionized gas tracers in M82. More precisely, rings traced by HCO, CO and HII regions are nested, with the HCO ring lying in the outer edge of the molecular torus. Observations of HCO in galactic clouds indicate that the abundance of HCO is strongly enhanced in the interfaces between the ionized and molecular gas. The surprisingly high overall abundance of HCO measured in M82 (X(HCO) ~ 4x10^{-10}) indicates that its nuclear disk can be viewed as a giant Photon Dominated Region (PDR) of ~ 650 pc size. The existence of various nested gas rings, with the highest HCO abundance occurring at the outer ring (X(HCO) ~ 0.8x10^{-9}), suggests that PDR chemistry is propagating in the disk. We discuss the inferred large abundances of HCO in M82 in the context of a starburst evolutionary scenario, picturing the M82 nucleus as an evolved starburst.Comment: 13 pages, 3 figures, to appear in ApJ Letters; corrected list of author

    Simulations of atomic trajectories near a dielectric surface

    Get PDF
    We present a semiclassical model of an atom moving in the evanescent field of a microtoroidal resonator. Atoms falling through whispering-gallery modes can achieve strong, coherent coupling with the cavity at distances of approximately 100 nanometers from the surface; in this regime, surface-induced Casmir-Polder level shifts become significant for atomic motion and detection. Atomic transit events detected in recent experiments are analyzed with our simulation, which is extended to consider atom trapping in the evanescent field of a microtoroid.Comment: 29 pages, 10 figure

    Absorption-Line Probes of Gas and Dust in Galactic Superwinds

    Full text link
    We discuss moderate resolution spectra of the NaD absorption-line in a sample of 32 far-IR-bright starburst galaxies. In 18 cases, the line is produced primarily by interstellar gas, and in 12 of these it is blueshifted by over 100 km/s relative to the galaxy systemic velocity. The absorption-line profiles in these outflow sources span the range from near the galaxy systemic velocity to a maximum blueshift of 400 to 600 km/s. The outflows occur in galaxies systematically viewed more nearly face-on than the others. We therefore argue that the absorbing material consists of ambient interstellar gas accelerated along the minor axis of the galaxy by a hot starburst-driven superwind. The NaD lines are optically-thick, but indirect arguments imply total Hydrogen column densities of N_H = few X 10^{21} cm^{-2}. This implies that the superwind is expelling matter at a rate comparable to the star-formation rate. This outflowing material is very dusty: we find a strong correlation between the depth of the NaD profile and the line-of-sight reddening (E(B-V) = 0.3 to 1 over regions several-to-ten kpc in size). The estimated terminal velocities of superwinds inferred from these data and extant X-ray data are typically 400 to 800 km/s, are independent of the galaxy rotation speed, and are comparable to (substantially exceed) the escape velocities for LL_* (dwarf) galaxies. The resulting loss of metals can establish the mass-metallicity relation in spheroids, produce the observed metallicity in the ICM, and enrich a general IGM to 101^{-1} solar metallicity. If the outflowing dust grains survive their journey into the IGM, their effect on observations of cosmologically-distant objects is significant.Comment: 65 pages, including 16 figures. ApJ, in pres

    Spatially Resolved Spitzer-IRS Spectroscopy of the Central Region of M82

    Get PDF
    We present high spatial resolution (~ 35 parsec) 5-38 um spectra of the central region of M82, taken with the Spitzer Infrared Spectrograph. From these spectra we determined the fluxes and equivalent widths of key diagnostic features, such as the [NeII]12.8um, [NeIII]15.5um, and H_2 S(1)17.03um lines, and the broad mid-IR polycyclic aromatic hydrocarbon (PAH) emission features in six representative regions and analysed the spatial distribution of these lines and their ratios across the central region. We find a good correlation of the dust extinction with the CO 1-0 emission. The PAH emission follows closely the ionization structure along the galactic disk. The observed variations of the diagnostic PAH ratios across M82 can be explained by extinction effects, within systematic uncertainties. The 16-18um PAH complex is very prominent, and its equivalent width is enhanced outwards from the galactic plane. We interpret this as a consequence of the variation of the UV radiation field. The EWs of the 11.3um PAH feature and the H_2 S(1) line correlate closely, and we conclude that shocks in the outflow regions have no measurable influence on the H_2 emission. The [NeIII]/[NeII] ratio is on average low at ~0.18, and shows little variations across the plane, indicating that the dominant stellar population is evolved (5 - 6 Myr) and well distributed. There is a slight increase of the ratio with distance from the galactic plane of M82 which we attribute to a decrease in gas density. Our observations indicate that the star formation rate has decreased significantly in the last 5 Myr. The quantities of dust and molecular gas in the central area of the galaxy argue against starvation and for negative feedback processes, observable through the strong extra-planar outflows.Comment: 15 pages, 12 figures, 3 tables, ApJ, emulateap

    SMA Imaging of CO(3-2) Line and 860 micron Continuum of Arp 220 : Tracing the Spatial Distribution of Luminosity

    Full text link
    We used the Submillimeter Array (SMA) to image 860 micron continuum and CO(3-2) line emission in the ultraluminous merging galaxy Arp 220, achieving a resolution of 0.23" (80 pc) for the continuum and 0.33" (120 pc) for the line. The CO emission peaks around the two merger nuclei with a velocity signature of gas rotation around each nucleus, and is also detected in a kpc-size disk encompassing the binary nucleus. The dust continuum, in contrast, is mostly from the two nuclei. The beam-averaged brightness temperature of both line and continuum emission exceeds 50 K at and around the nuclei, revealing the presence of warm molecular gas and dust. The dust emission morphologically agrees with the distribution of radio supernova features in the east nucleus, as expected when a starburst heats the nucleus. In the brighter west nucleus, however, the submillimeter dust emission is more compact than the supernova distribution. The 860 micron core, after deconvolution, has a size of 50-80 pc, consistent with recent 1.3 mm observations, and a peak brightness temperature of (0.9-1.6)x10^2 K. Its bolometric luminosity is at least 2x10^{11} Lsun and could be ~10^{12} Lsun depending on source structure and 860 micron opacity, which we estimate to be of the order of tau_{860} ~ 1 (i.e., N_{H_2} ~ 10^{25} cm^{-2}). The starbursting west nuclear disk must have in its center a dust enshrouded AGN or a very young starburst equivalent to hundreds of super star clusters. Further spatial mapping of bolometric luminosity through submillimeter imaging is a promising way to identify the heavily obscured heating sources in Arp 220 and other luminous infrared galaxies.Comment: ApJ. in press. 26 pages, 10 figure

    New Measurements of Nucleon Structure Functions from the CCFR/NuTeV Collaboration

    Get PDF
    We report on the extraction of the structure functions F_2 and Delta xF_3 = xF_3nu-xF_3nubar from CCFR neutrino-Fe and antineutrino-Fe differential cross sections. The extraction is performed in a physics model independent (PMI) way. This first measurement for Delta xF_3, which is useful in testing models of heavy charm production, is higher than current theoretical predictions. The F_2 (PMI) values measured in neutrino and muon scattering are in good agreement with the predictions of Next to Leading Order PDFs (using massive charm production schemes), thus resolving the long-standing discrepancy between the two sets of data.Comment: 5 pages. Presented by Arie Bodek at the CIPNAP2000 Conference, Quebec City, May 200
    corecore