919 research outputs found
Electromagnetically Induced Transparency in strongly interacting Rydberg Gases
We develop an efficient Monte-Carlo approach to describe the optical response
of cold three-level atoms in the presence of EIT and strong atomic
interactions. In particular, we consider a "Rydberg-EIT medium" where one
involved level is subject to large shifts due to strong van der Waals
interactions with surrounding Rydberg atoms. We find excellent agreement with
much more involved quantum calculations and demonstrate its applicability over
a wide range of densities and interaction strengths. The calculations show that
the nonlinear absorption due to Rydberg-Rydberg atom interactions exhibits
universal behavior
Many-body theory of excitation dynamics in an ultracold Rydberg gas
We develop a theoretical approach for the dynamics of Rydberg excitations in
ultracold gases, with a realistically large number of atoms. We rely on the
reduction of the single-atom Bloch equations to rate equations, which is
possible under various experimentally relevant conditions. Here, we explicitly
refer to a two-step excitation-scheme. We discuss the conditions under which
our approach is valid by comparing the results with the solution of the exact
quantum master equation for two interacting atoms. Concerning the emergence of
an excitation blockade in a Rydberg gas, our results are in qualitative
agreement with experiment. Possible sources of quantitative discrepancy are
carefully examined. Based on the two-step excitation scheme, we predict the
occurrence of an antiblockade effect and propose possible ways to detect this
excitation enhancement experimentally in an optical lattice as well as in the
gas phase.Comment: 12 pages, 8 figure
Expanding distribution and occurence of the Indo-Pacific Stomatopod, Erugosquilla massavensis (Kossmann, 1880) on the Aegean coast of Turkey
The indo-Pacific mantis shrimp, Erugosquilla massavensis was recently collected from Sigacik Bay,located on the Aegean coast of Turkey. It is the first record of the species along the Aegean coast of Turke
Adiabatic entanglement transport in Rydberg aggregates
We consider the interplay between excitonic and atomic motion in a regular,
flexible chain of Rydberg atoms, extending our recent results on entanglement
transport in Rydberg chains [W\"uster et al., Phys.Rev.Lett 105 053004 (2010)].
In such a Rydberg chain, similar to molecular aggregates, an electronic
excitation is delocalised due to long range dipole-dipole interactions among
the atoms. The transport of an exciton that is initially trapped by a chain
dislocation is strongly coupled to nuclear dynamics, forming a localised pulse
of combined excitation and displacement. This pulse transfers entanglement
between dislocated atoms adiabatically along the chain. Details about the
interaction and the preparation of the initial state are discussed. We also
present evidence that the quantum dynamics of this complex many-body problem
can be accurately described by selected quantum-classical methods, which
greatly simplify investigations of excitation transport in flexible chains
First record of the red shrimp, Aristeus antennatus (Risso, 1816) (Decapoda: Aristeidae) from the Aegean Sea coast of Turkey
A female specimen of the deep-water red shrimp, Aristeus antennatus(Risso, 1816) was caught at depths of between 550 m and 670 m during 2005 by trawling off the Marmaris coast. A. antennatus is a species known to inhabit only the Levantine Sea coast of Turkey. This paper is on the first record of the species along the southern Aegean Sea coast of Turke
Correlations of Rydberg excitations in an ultra-cold gas after an echo sequence
We show that Rydberg states in an ultra-cold gas can be excited with strongly
preferred nearest-neighbor distance if densities are well below saturation. The
scheme makes use of an echo sequence in which the first half of a laser pulse
excites Rydberg states while the second half returns atoms to the ground state,
as in the experiment of Raitzsch et al. [Phys. Rev. Lett. 100 (2008) 013002].
Near to the end of the echo sequence, almost any remaining Rydberg atom is
separated from its next-neighbor Rydberg atom by a distance slightly larger
than the instantaneous blockade radius half-way through the pulse. These
correlations lead to large deviations of the atom counting statistics from a
Poissonian distribution. Our results are based on the exact quantum evolution
of samples with small numbers of atoms. We finally demonstrate the utility of
the omega-expansion for the approximate description of correlation dynamics
through an echo sequence.Comment: 8 pages, 6 figure
Two-photon interference using background-free quantum frequency conversion of single photons from a semiconductor quantum dot
We show that quantum frequency conversion (QFC) can overcome the spectral
distinguishability common to inhomogeneously broadened solid-state quantum
emitters. QFC is implemented by combining single photons from an InAs quantum
dot (QD) at 980 nm with a 1550 nm pump laser in a periodically-poled lithium
niobate (PPLN) waveguide to generate photons at 600 nm with a
signal-to-background ratio exceeding 100:1. Photon correlation and two-photon
interference measurements confirm that both the single photon character and
wavepacket interference of individual QD states are preserved during frequency
conversion. Finally, we convert two spectrally separate QD transitions to the
same wavelength in a single PPLN waveguide and show that the resulting field
exhibits non-classical two-photon interference.Comment: Supercedes arXiv:1205.221
Climate change impact, adaptation, and mitigation in temperate grazing systems: a review
Managed temperate grasslands occupy 25% of the world, which is 70% of global agricultural land. These lands are an important source of food for the global population. This review paper examines the impacts of climate change on managed temperate grasslands and grassland-based livestock and effectiveness of adaptation and mitigation options and their interactions. The paper clarifies that moderately elevated atmospheric CO2 (eCO2) enhances photosynthesis, however it may be restiricted by variations in rainfall and temperature, shifts in plant’s growing seasons, and nutrient availability. Different responses of plant functional types and their photosynthetic pathways to the combined effects of climatic change may result in compositional changes in plant communities, while more research is required to clarify the specific responses. We have also considered how other interacting factors, such as a progressive nitrogen limitation (PNL) of soils under eCO2, may affect interactions of the animal and the environment and the associated production. In addition to observed and modelled declines in grasslands productivity, changes in forage quality are expected. The health and productivity of grassland-based livestock are expected to decline through direct and indirect effects from climate change. Livestock enterprises are also significant cause of increased global greenhouse gas (GHG) emissions (about 14.5%), so climate risk-management is partly to develop and apply effective mitigation measures. Overall, our finding indicates complex impact that will vary by region, with more negative than positive impacts. This means that both wins and losses for grassland managers can be expected in different circumstances, thus the analysis of climate change impact required with potential adaptations and mitigation strategies to be developed at local and regional levels
Nonlocal Nonlinear Optics in cold Rydberg Gases
We present an analytical theory for the nonlinear optical response of a
strongly interacting Rydberg gas under conditions of electromagnetically
induced transparency. Simple formulae for the third order optical
susceptibility are derived and shown to be in excellent agreement with recent
experiments. The obtained expressions reveal strong nonlinearities, which in
addition are of highly nonlocal character. This property together with enormous
strength of the Rydberg-induced nonlinearities is shown to yield a unique
laboratory platform for nonlinear wave phenomena, such as collapse-arrested
modulational instabilities in a self-defocussing medium.Comment: 5 pages, 5 figure
- …