6,339 research outputs found

    ESTIMATING POTENTIAL GAINS TO COOPERATION FOR LIMITED WATER RESOURCES ALONG THE RIO GRANDE

    Get PDF
    We examine the potential gains from cooperation in the withdrawal of water from the Hueco Bolson aquifer that provides a substantial portion of municipal water supplies in El Paso, Texas and Ciudad Juarez, Mexico. The aquifer lies beneath the international border, and both cities operate independently regarding pumping rates and annual withdrawals. The natural the rate of recharge has been less than the sum of annual withdrawals since the early 1900s, and the resource likely will be depleted if current pumping rates are maintained. Optimal pumping rates and depths are described using a model that maximizes the sum of net benefits obtained from municipal water supplies in both cities. Those results are compared with pumping rates and depths obtained using a dynamic game-theory model of strategic behavior involving the two cities.Resource /Energy Economics and Policy,

    Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights

    Full text link
    There is an ongoing debate on the therapeutic potential of vaso-modulatory interventions against glioma invasion. Prominent vasculature-targeting therapies involve functional tumour-associated blood vessel deterioration and normalisation. The former aims at tumour infarction and nutrient deprivation medi- ated by vascular targeting agents that induce occlusion/collapse of tumour blood vessels. In contrast, the therapeutic intention of normalising the abnormal structure and function of tumour vascular net- works, e.g. via alleviating stress-induced vaso-occlusion, is to improve chemo-, immuno- and radiation therapy efficacy. Although both strategies have shown therapeutic potential, it remains unclear why they often fail to control glioma invasion into the surrounding healthy brain tissue. To shed light on this issue, we propose a mathematical model of glioma invasion focusing on the interplay between the mi- gration/proliferation dichotomy (Go-or-Grow) of glioma cells and modulations of the functional tumour vasculature. Vaso-modulatory interventions are modelled by varying the degree of vaso-occlusion. We discovered the existence of a critical cell proliferation/diffusion ratio that separates glioma invasion re- sponses to vaso-modulatory interventions into two distinct regimes. While for tumours, belonging to one regime, vascular modulations reduce the tumour front speed and increase the infiltration width, for those in the other regime the invasion speed increases and infiltration width decreases. We show how these in silico findings can be used to guide individualised approaches of vaso-modulatory treatment strategies and thereby improve success rates

    Water vapor emission from IRC+10216 and other carbon-rich stars: model predictions and prospects for multitransition observations

    Full text link
    We have modeled the emission of H2O rotational lines from the extreme C-rich star IRC+10216. Our treatment of the excitation of H2O emissions takes into account the excitation of H2O both through collisions, and through the pumping of the nu2 and nu3 vibrational states by dust emission and subsequent decay to the ground state. Regardless of the spatial distribution of the water molecules, the H2O 1_{10}-1_{01} line at 557 GHz observed by the Submillimeter Wave Astronomy Satellite (SWAS) is found to be pumped primarily through the absorption of dust-emitted photons at 6 μ\mum in the nu2 band. As noted by previous authors, the inclusion of radiative pumping lowers the ortho-H2O abundance required to account for the 557 GHz emission, which is found to be (0.5-1)x10^{-7} if the presence of H2O is a consequence of vaporization of orbiting comets or Fischer-Tropsch catalysis. Predictions for other submillimeter H2O lines that can be observed by the Herschel Space Observatory (HSO) are reported. Multitransition HSO observations promise to reveal the spatial distribution of the circumstellar water vapor, discriminating among the several hypotheses that have been proposed for the origin of the H2O vapor in the envelope of IRC+10216. We also show that, for observations with HSO, the H2O 1_{10}-1_{01} 557 GHz line affords the greatest sensitivity in searching for H2O in other C-rich AGB stars.Comment: 35 pages, 12 figures, to be published in The Astrophysical Journa

    The Excitation of N2_2H+^+ in Interstellar Molecular Clouds. I - Models

    Get PDF
    We present LVG and non-local radiative transfer calculations involving the rotational and hyperfine structure of the spectrum of N2_2H+^+ with collisional rate coefficients recently derived by us. The goal of this study is to check the validity of the assumptions made to treat the hyperfine structure and to study the physical mechanisms leading to the observed hyperfine anomalies. We find that the usual hypothesis of identical excitation temperatures for all hyperfine components of the JJ=1-0 transition is not correct within the range of densities existing in cold dense cores, i.e., a few 104^4 \textless n(H2_2) \textless a few 106^6 cm3^{-3}. This is due to different radiative trapping effects in the hyperfine components. Moreover, within this range of densities and considering the typical abundance of N2_2H+^+, the total opacity of rotational lines has to be derived taking into account the hyperfine structure. The error made when only considering the rotational energy structure can be as large as 100%. Using non-local models we find that, due to saturation, hyperfine anomalies appear as soon as the total opacity of the JJ=1-0 transition becomes larger than \simeq 20. Radiative scattering in less dense regions enhance these anomalies, and particularly, induce a differential increase of the excitation temperatures of the hyperfine components. This process is more effective for the transitions with the highest opacities for which emerging intensities are also reduced by self-absorption effects. These effects are not as critical as in HCO+^+ or HCN, but should be taken into account when interpreting the spatial extent of the N2_2H+^+ emission in dark clouds.Comment: 13 pages, 12 figure
    corecore