2,371 research outputs found
Application of thermoluminescence for detection of cascade shower 1: Hardware and software of reader system
A reader system for the detection of cascade showers via luminescence induced by heating sensitive material (BaSO4:Eu) is developed. The reader system is composed of following six instruments: (1) heater, (2) light guide, (3) image intensifier, (4) CCD camera, (5) image processor, (6) microcomputer. The efficiency of these apparatuses and software application for image analysis is reported
Application of thermoluminescence for detection of cascade shower 2: Detection of cosmic ray cascade shower at Mount Fuji
The results of a thermoluminescence (TL) chamber exposed at Mt. Fuji during Aug. '83 - Aug. '84 are reported. The TL signal induced by cosmic ray shower is detected and compared with the spot darkness of X-ray film exposed at the same time
Hydroxyapatite and bFGF Coating of Detachable Coils for Endovascular Occlusion of Experimental Aneurysms
Hydroxyapatite Coating of Detachable Coils for Endovascular Occlusion of Experimental Aneurysm
Amplified biochemical oscillations in cellular systems
We describe a mechanism for pronounced biochemical oscillations, relevant to
microscopic systems, such as the intracellular environment. This mechanism
operates for reaction schemes which, when modeled using deterministic rate
equations, fail to exhibit oscillations for any values of rate constants. The
mechanism relies on amplification of the underlying stochasticity of reaction
kinetics within a narrow window of frequencies. This amplification allows
fluctuations to beat the central limit theorem, having a dominant effect even
though the number of molecules in the system is relatively large. The mechanism
is quantitatively studied within simple models of self-regulatory gene
expression, and glycolytic oscillations.Comment: 35 pages, 6 figure
Genome landscapes and bacteriophage codon usage
Across all kingdoms of biological life, protein-coding genes exhibit unequal
usage of synonmous codons. Although alternative theories abound, translational
selection has been accepted as an important mechanism that shapes the patterns
of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns
of codon usage across 74 diverse bacteriophages that infect E. coli, P.
aeruginosa and L. lactis as their primary host. We introduce the concept of a
`genome landscape,' which helps reveal non-trivial, long-range patterns in
codon usage across a genome. We develop a series of randomization tests that
allow us to interrogate the significance of one aspect of codon usage, such a
GC content, while controlling for another aspect, such as adaptation to
host-preferred codons. We find that 33 phage genomes exhibit highly non-random
patterns in their GC3-content, use of host-preferred codons, or both. We show
that the head and tail proteins of these phages exhibit significant bias
towards host-preferred codons, relative to the non-structural phage proteins.
Our results support the hypothesis of translational selection on viral genes
for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference
The Majorana Project
Building a \BBz experiment with the ability to probe neutrino mass in the
inverted hierarchy region requires the combination of a large detector mass
sensitive to \BBz, on the order of 1-tonne, and unprecedented background
levels, on the order of or less than 1 count per year in the \BBz signal
region. The MAJORANA Collaboration proposes a design based on using high-purity
enriched Ge-76 crystals deployed in ultra-low background electroformed Cu
cryostats and using modern analysis techniques that should be capable of
reaching the required sensitivity while also being scalable to a 1-tonne size.
To demonstrate feasibility, the collaboration plans to construct a prototype
system, the MAJORANA DEMONSTRATOR, consisting of 30 kg of 86% enriched \Ge-76
detectors and 30 kg of natural or isotope-76-depleted Ge detectors. We plan to
deploy and evaluate two different Ge detector technologies, one based on a
p-type configuration and the other on n-type.Comment: paper submitted for the 2008 Carolina International Symposium on
Neutrino Physic
CD20 and CD19 targeted vectors induce minimal activation of resting B lymphocytes
B lymphocytes are an important cell population of the immune system. However, until recently it was not possible to transduce resting B lymphocytes with retro- or lentiviral vectors, making them unsusceptible for genetic manipulations by these vectors. Lately, we demonstrated that lentiviral vectors pseudotyped with modified measles virus (MV) glycoproteins hemagglutinin, responsible for receptor recognition, and fusion protein were able to overcome this transduction block. They use either the natural MV receptors, CD46 and signaling lymphocyte activation molecule (SLAM), for cell entry (MV-LV) or the vector particles were further modified to selectively enter via the CD20 molecule, which is exclusively expressed on B lymphocytes (CD20-LV). It has been shown previously that transduction by MV-LV does not induce B lymphocyte activation. However, if this is also true for CD20-LV is still unknown. Here, we generated a vector specific for another B lymphocyte marker, CD19, and compared its ability to transduce resting B lymphocytes with CD20-LV. The vector (CD19ds-LV) was able to stably transduce unstimulated B lymphocytes, albeit with a reduced efficiency of about 10% compared to CD20-LV, which transduced about 30% of the cells. Since CD20 as well as CD19 are closely linked to the B lymphocyte activation pathway, we investigated if engagement of CD20 or CD19 molecules by the vector particles induces activating stimuli in resting B lymphocytes. Although, activation of B lymphocytes often involves calcium influx, we did not detect elevated calcium levels. However, the activation marker CD71 was substantially up-regulated upon CD20-LV transduction and most importantly, B lymphocytes transduced with CD20-LV or CD19ds-LV entered the G1b phase of cell cycle, whereas untransduced or MV-LV transduced B lymphocytes remained in G0. Hence, CD20 and CD19 targeting vectors induce activating stimuli in resting B lymphocytes, which most likely renders them susceptible for lentiviral vector transduction
p600 Plays Essential Roles in Fetal Development
p600 is a multifunctional protein implicated in cytoskeletal organization, integrin-mediated survival signaling, calcium-calmodulin signaling and the N-end rule pathway of ubiquitin-proteasome-mediated proteolysis. While push, the Drosophila counterpart of p600, is dispensable for development up to adult stage, the role of p600 has not been studied during mouse development. Here we generated p600 knockout mice to investigate the in vivo functions of p600. Interestingly, we found that homozygous deletion of p600 results in lethality between embryonic days 11.5 and 13.5 with severe defects in both embryo and placenta. Since p600 is required for placental development, we performed conditional disruption of p600, which deletes selectively p600 in the embryo but not in the placenta. The conditional mutant embryos survive longer than knockout embryos but ultimately die before embryonic day 14.5. The mutant embryos display severe cardiac problems characterized by ventricular septal defects and thin ventricular walls. These anomalies are associated with reduced activation of FAK and decreased expression of MEF2, which is regulated by FAK and plays a crucial role in cardiac development. Moreover, we observed pleiotropic defects in the liver and brain. In sum, our study sheds light on the essential roles of p600 in fetal development
- …
